МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета Небольсин В.А

«31» августа 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Химия»

Направление подготовки 12.03.04 Биотехнические системы и технологии

Профиль Биотехнические и медицинские аппараты и системы

Квалификация выпускника бакалавр

Нормативный период обучения 4 года / 4 года и 11 м.

Форма обучения очная / заочная

Год начала подготовки <u>2021</u>

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Формирование у обучающихся компетенций, заключающихся способности использовать основные законы И понятия химии профессиональной деятельности, осуществлять поиск, критический анализ и синтез информации, применять естественнонаучные знания и системный подход для решения поставленных химических задач, связанных разработкой, проектированием, конструированием, технологиями производства и эксплуатации биотехнических систем.

1.2. Задачи освоения дисциплины

Овладение теоретическими знаниями о строения атома, химических свойствах элементов и их соединений периодической системы Менделеева, типов химической связи в соединениях и типов межмолекулярных взаимодействий; изучение законов термодинамики и кинетики для решения вопроса о возможности осуществления химических реакций в заданных условиях; овладение методами решения химических задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Химия» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Химия» направлен на формирование следующих компетенций:

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

ОПК-1 - Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в инженерной деятельности, связанной с разработкой, проектированием, конструированием, технологиями производства и эксплуатации биотехнических систем

Компетенция	Результаты обучения, характеризующие сформированность компетенции						
УК-1	Знать источники научно-технической и справочной информации						
	в области химии						
	Уметь осуществлять поиск, критический анализ и синтез						
	информации, применять системный подход для решения						
	поставленных химических задач						
	Владеть навыками применения научно-технической и						
	справочной информации для решения поставленных химических						
	задач						
ОПК-1	Знать основные теоретические представления о строении атома,						
	молекулы, вещества, о природе химической связи в молекулах,						
	зависимость химических свойств веществ от их строения,						

химическую термодинамику и кине	етику, растворы,
электрохимические и физико-химиче	ские процессы,
используемые профессиональной деятельност	ТИ.
Уметь анализировать и применять химич	еские законы для
решения теоретических задач; находить в	заимосвязь между
положением элементов в периодической си	стеме, положением
элемента в ряду напряжений металлов, таблиг	це растворимости
Владеть навыками применения методов э	кспериментального
исследования химических процессов	•

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Химия» составляет 3 з.е. Распределение трудоемкости дисциплины по видам занятий **очная форма обучения**

Виды учебной работы	Всего	Семестры
Виды учесной расоты	часов	2
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	54	54
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

заочная форма обучения

	Даата	Сомости
Виды учебной работы	Всего	Семестры
Виды у теспон рассты	часов	4
Аудиторные занятия (всего)	12	12
В том числе:		
Лекции	4	4
Лабораторные работы (ЛР)	8	8
Самостоятельная работа	92	92
Часы на контроль	4	4
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Содержание разделов дисциплины и распределение **5.1** трудоемкости по видам занятий

очная форма обучения

	1	очная форма обучения				
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	химии: основные понятия	Введение в курс химии. Взаимосвязь химии с другими науками. Значение химических знаний для студентов, специализирующихся в области физики низких температур. Источники научно-технической и справочной информации по химии и работа с ними. Основные понятия и законы химии. Номенклатура, классификация, получение и химические свойства оксидов, оснований, кислот и солей.	4	6	8	18
2	периодическая система	Ядерная модель атома. Двойственная природа электрона. Уравнение Шрёдингера. Волновая функция электрона Квантовые числа. Классификация электронных состояний, электронные уровни, подуровни и орбитали. Три принципа распределения в многоэлектронных атомах. Электронные и электронографические формулы. Периодическая система элементов Д.И. Менделеева и электронная структура атомов. Современная формулировка периодического закона. Периодически изменяющиеся свойства атомов элементов (атомные радиусы, энергии ионизации и сродства к электрону, электроотрицательность, валентность). Изменение химических свойств элементов и их соединений в	4	6	8	18
3	Химическая связь. Реакции окисления - восстановления.	группах и периодах Квантово-механическая теория химической связи. Модель Гейтлера-Лондона. Ковалентная связь с позиций метода валентных связей (МВС), её характеристики: энергии образования и разрыва связей, полярность, направленность, кратность, насыщенность. Гибридизация атомных орбиталей. Донор но-акцепторный механизм образования ковалентной связи. Валентность с точки зрения МВС. Ионная связь. Представления о методе молекулярных орбиталей (ММО). Металлическая связь. Водородная	4	6	8	18

		связь. Реакции окисления				
		восстановления: межмолекулярное				
		окисление- восстановление,				
		внутримолекулярное				
		окисление-восстановление				
4	Основы химической	Первый закон термодинамики.				
-	термодинамики.	Равновесные и обратимые процессы.				
	Гермодинамики.	Зависимость теплового эффекта				
		1 1				
		<u> </u>				
		1 31				
		эффектов				
		химических реакций по таблицам				
		стандартных значений теплот				
		образования веществ.				
		Самопроизвольные и	2	6	10	18
		несамопроизвольные процессы.				
		Второй закон термодинамики.				
		Энтропия. Принцип возрастания				
		энтропии. Энтропия и				
		термодинамическая вероятность.				
		Химическое равновесие. Закон				
		действующих масс в гомогенных и				
		гетерогенных системах. Влияние				
		температуры на химическое				
	10	равновесие.				
5	Кинетика химических	Скорость гомогенных и				
	реакций.	гетерогенных химических реакций.				
		Зависимость скорости реакции от				
		концентрации реагентов. Влияние				
		температуры на скорость реакции:	2	6	10	18
		правило Вант-Гоффа, уравнение				
		Аррениуса. Энергия активации.				
		Механизм химических реакций.				
		Смещение химического равновесия				
	П	(принцип Ле-Шателье).				
6	Дисперсные системы.	Общие свойства растворов: способы				
	Растворы.	выражения концентрации растворов;				
	Электрохимические	давление насыщенного пара				
	_	бинарных растворов (законы Рауля и				
	металлов.	Генри). Осмотическое давление.				
		Растворы электролитов. Двойной				
		электрический слой. Гальванические	•	_	10	10
		элементы. Электродные потенциалы	2	6	10	18
		и электродвижущие силы.				
		Электролиз. Катодные и анодные				
		процессы. Законы Фарадея.				
		Химические свойства металлов:				
		взаимодействие с неметаллами,				
		водой, щелоча- ми, солями,				
		кислотами.				
		Итого	18	36	54	108

заочная форма обучения

№ π/π	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	*	Введение в курс химии. Взаимосвязь химии с другими науками. Значение	,	2	14	18

и законы химии. Классы неорганических соединений.	химических знаний для студентов, специализирующихся в области физики низких температур. Источники научно-технической и справочной информации по химии и работа с ними. Основные понятия и законы химии. Номенклатура, классификация, получение и химические свойства оксидов, оснований, кислот и солей.				
периодическая система	Ядерная модель атома. Двойственная природа электрона. Уравнение Шрёдингера. Волновая функция электрона Квантовые числа. Классификация электронных состояний, электронные уровни, подуровни и орбитали. Три принципа распределения в многоэлектронных атомах. Электронные и электронографические формулы. Периодическая система элементов Д.И. Менделеева и электронная структура атомов. Современная формулировка периодического закона. Периодически изменяющиеся свойства атомов элементов (атомные радиусы, энергии ионизации и сродства к электрону, электроотрицательность, валентность). Изменение химических свойств элементов и их соединений в группах и периодах	2	2	14	18
З Химическая связь. Реакции окисления-восстановления.	Квантово-механическая теория химической связи. Модель Гейтлера-Лондона. Ковалентная связь с позиций метода валентных связей (МВС), её характеристики: энергии образования и разрыва связей, полярность, направленность, кратность, насыщенность. Гибридизация атомных орбиталей. Донорно-акцепторный механизм образования ковалентной связи. Валентность с точки зрения МВС. Ионная связь. Представления о методе молекулярных орбиталей (ММО). Металлическая связь. Водородная связь. Реакции окисления восстановление: межмолекулярное окисление-восстановление	-	2	16	18
4 Основы химической термодинамики.	i -	-	2	16	18

I		Итого	4	8	92	104
		кислотами.				
		водой, щелоча- ми, солями,				
		взаимодействие с неметаллами,				
		Химические свойства металлов:				
		процессы. Законы Фарадея.				
		Электролиз. Катодные и анодные				
		и электродвижущие силы.				
		элементы. Электродные потенциалы	-	-	16	16
		электрический слой. Гальванические				
		Растворы электролитов. Двойной				
	металлов	Генри). Осмотическое давление.				
		бинарных растворов (законы Рауля и				
	Электрохимические	давление насыщенного пара				
0	Растворы.	выражения концентрации растворов;				
6	Дисперсные системы.	Общие свойства растворов: способы				
		Смещение химического равновесия (принцип Ле-Шателье).				
		Механизм химических реакций.				
		Аррениуса. Энергия активации.				
		правило Вант-Гоффа, уравнение			~	~
		температуры на скорость реакции:	_	-	16	16
		концентрации реагентов. Влияние				
		Зависимость скорости реакции от				
	реакций.	гетерогенных химических реакций.				
5	Кинетика химических	*				
		равновесие.				
		температуры на химическое				
		гетерогенных системах. Влияние				
		действующих масс в гомогенных и				
		Химическое равновесие. Закон				
		термодинамическая вероятность.				
		энтропии. Энтропия и				
		Энтропия. Принцип возрастания				
		Второй закон термодинамики.				
		несамопроизвольные процессы.				
		Самопроизвольные и				
		теплот образования веществ.				
		эффектов химических реакций по таблицам стандартных значений				
		температуры. Расчёты тепловых				

5.2 Перечень лабораторных работ

- 1. Основные понятия и законы химии.
- 2. Строение атома и периодическая система элементов.
- 3. Реакции окисления-восстановления.
- 4. Термохимические измерения
- 5. Термическая устойчивость карбонатов.
- 6. Скорость химических реакций. Химическое равновесие.
- 7. Реакции обмена в растворах электролитов. Гидролиз солей
- 8. Электрохимические процессы.
- 9. Общие свойства металлов. Окислительно-восстановительные свойства d-элементов.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
УК-1	Знать источники научно-технической и справочной информации в области химии	1	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
		-	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками применения научно-технической и справочной информации для решения поставленных химических задач	прикладных задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ОПК-1	Знать основные теоретические представления о строении атома, молекулы, вещества, о природе химической связи в молекулах, зависимость химических свойств веществ от их строения, химическую термодинамику и кинетику, растворы, электрохимические и физико-химические процессы, используемые профессиональной деятельности	Активная работа на практических и лабораторных занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь анализировать и применять химические законы для решения теоретических задач; находить взаимосвязь между положением элементов в периодической системе, положением элемента в ряду напряжений металлов, таблице растворимости	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

Ī	Владеть	моделированием	И	Решение		Выполнение работ в	Невыполнение
l	методами	экспериментальн	ЮГО	прикладных	задач	срок,	работ в срок,
ı	исследования	я химичес	ских	в конкр	етной	предусмотренный в	предусмотренный
	процессов,	навыками примене	ния	предметной		рабочих программах	в рабочих
	методов мат	ематической обрабо	тки	области			программах
	результатов.						

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 2 семестре для очной формы обучения, 4 семестре для заочной формы обучения по двухбалльной системе:

«зачтено» «не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
УК-1	Знать источники научно-технической и справочной информации в области химии		Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных химических задач		Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
	Владеть навыками применения научно-технической и справочной информации для решения поставленных химических задач	прикладных задач в конкретной предметной	Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены
ОПК-1	Знать основные теоретические представления о строении атома, молекулы, вещества, о природе химической связи в молекулах, зависимость химических свойств веществ от их строения, химическую термодинамику и кинетику, растворы, электрохимические и физико—химические и процессы, используемые профессиональной деятельности	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	Уметь анализировать и применять химические	Решение стандартных практических задач	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены

Владеть моделированием и	Решение	Продемонстрирован	Задачи не решены
методами	прикладных задач в	верный ход решения	
экспериментального	конкретной	в большинстве задач	
исследования химических	предметной		
процессов,	области		
навыками применения			
методов математической			
обработки результатов.			

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. В перечне формул кислот: 1) HNO₃ 2) H_2SO_3 3) HBr 4) H_3PO_4 5) HCl укажите номера тех, которые образуют кислые соли. (2, 4)
 - 2. Укажите, в каком из приведенных рядов
 - 1) CO_2 , SO_2 , Al_2O_3
 - 2) CaO, N₂O₅, Al₂O₃
 - 3) MgO, ZnO, Al_2O_3
 - 4) CO, NO₂, Fe₂O₃

все вещества взаимодействуют со щелочами. (1)

- 3. Укажите квантовое число: 1) главное 2) орбитальное 3) магнитное или 4) спиновое, уровень которого в электронной оболочке атома определяет энергетический уровень. (1)
- 4. Для атома с электронной формулой внешних электронов $4s^24p^1$ укажите атомный номер элемента. (31)
- 5. Куда сместится равновесие реакции $2NO+O_2=2NO_2$ в результате увеличения в системе давления. (В сторону прямой реакции)
- 6. Для обратимой реакции $CaCO_3(\kappa) \leftrightarrow CaO(\kappa) + CO_2(\Gamma)$; $\Delta H^\circ = 177,5 \ кДж укажите направление смещения равновесия (1 влево, 2 вправо, 3 не смещается) при повышении температуры. (2 вправо)$
- 7. Назовите источники справочной информации по химии (Справочник химика, справочник термодинамических величин и др.)
- 8. Определить порядковый номер в Периодической системе элемента, имеющего электронную структуру, выраженную формулой: $1s^22s^22p^63s^23p^63d^34s^2$. (23)
- 9. К какому типу химической связи относится связь между атомами в молекулах: а) KI, б) Br_2 , в) металла Sn. (а- ионная; б- ковалентная неполярная; в -металлическая)
- 10. Из каких солей $Pb(NO_3)_2$, $Al_2(SO_4)_3$, $CuSO_4$, $AgNO_3$, $ZnSO_4$ металл может быть вытеснен никелем ($Pb(NO_3)_2$, $CuSO_4$, $AgNO_3$)

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. При окислении 2 г двухвалентного металла образовалось 2,8 г оксида. Определите количество провзаимодействовавшего кислорода и атомную массу.
 - 2. В обратимой реакции $2SO_2(\Gamma)+O_2(\Gamma)\Box 2SO_3(\Gamma)$ равновесие установилось

при следующих концентрациях веществ (моль/л): $[O_2] = 0.3$; $[SO_2] = 0.7$; $[SO_3] = 0.5$. Вычислите константу равновесия реакции. (1,7)

- 3. Вычислите электродный потенциал цинка, опущенный в раствор его соли с активностью ионов $Zn_2+0.001$ моль/л. (-0,85)
- 4. Из 2,0 г двухвалентного металла образовалось 2,8 г оксида. Определите: число атомов в химической формуле оксида. (2)
- 5. При окислении 2,81 г кадмия получено 3,21 г оксида кадмия. Вычислить эквивалент кадмия. (56,2)
- 6. Вычислить эквивалент H_2SO_4 в реакциях обмена, в результате которых образуется: а) кислые соли MeHSO₄; б) нормальные соли MeSO₄. (a) 98, б) 49)
- 7. Начальные концентрации исходных веществ реакции, протекающей по уравнению $2NO+O_2=2NO_2$ равны NO=0.06 моль/л, $O_2=0.10$ моль/л. Вычислить концентрации O_2 и NO_2 , когда NO станет равным 0.04 моль/л. ($O_2=-0.01$ моль/л, $NO_2=0.02$ моль/л.)
- 8. Во сколько раз увеличится скорость химической реакции при повышении температуры от 40 до 200 °C, принимая температурный коэффициент скорости реакции равным 2. (216 или 65536 раз)
- 9. Вычислить константу равновесия К для обратимой реакции $CO+H_2O=CO_2+H_2$, если начальные концентрации исходных веществ равны CO=0,10 моль/л, $H_2O=0,40$ моль/л, а в равновесии образовалось $CO_2=0,08$ моль/л (1)
 - 10. Вычислить титр 0,1 н. раствора NaCl. (0,00585 г/мл)

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Составить электронные и электрографические формулы углерода в нормальном и возбужденном состояниях (... $2S^2 2p^2$; ... $2S^1 2p^3$)
- 2. При взаимодействии SiF_4 с HF образуется сильная H_2SiF_6 , которая диссоциирует на ионы H^{+1} и SiF^{2-} . Почему не протекает подобная реакция между CF^4 и F? Каков тип гибридизации AO Si в ионе SiF_6^{2-} . (нет валентных орбиталей на валентном уровне; sp^3d^2)
- 3. Вычислить тепловой эффект реакции Si + 4HCl (Γ) → SiCl₄ + 2H₂↑ при 298 K, если энтальпии образования участников реакции равны: $\Delta H^0_{298}(HCl) = -92,31 \text{ кДж/моль}; \Delta H^0_{298}(SiCl_4) = -662,200 \text{ кДж/моль}. (-293 кДж)$
- 4. Возможна ли реакция $SiCl_4 + H_2 \rightarrow SiCl_2 + 2HCl(\Gamma)$ при 298K, если даны термодинмические функции участников реакции:

вещество ΔH^0_{298} 248 КДж/моль S^0_{298} Дж/(моль·К)

SiCl₄ -662,200 331,340

 $H_2 = 0$ 130,570

HCl (Γ) -92,31 186,786

SiCl₂ -163,06 281,495

(Реакция невозможна)

- 5.Увеличится или уменьшится энтропия реакции $SiCl_4(\Gamma) + 2H_2(\Gamma) \rightarrow Si(TB) + 4HCl(\Gamma)$? Вывод сделать, не вычисляя изменение энтропии реакции. (Увеличится)
 - 6. Вычислить исходную концентрацию тетрахлорида кремния, если при

наступлении равновесия реакции $SiCl_4 + H_2 \leftrightarrow SiCl_2 + 2HCl$ установились концентрации: $[SiCl_4] = 3$ моль/л; $[H_2] = 1$ моль/л; $[H_2] = 0.8$ моль/л . (3.4 моль/л)

- 7.Как изменится скорость прямой реакции $SiH_4 + Cl_2 \rightarrow SiH_3Cl + HCl$, если объем реакционного сосуда увеличить в 2 раза: а) уменьшится в 2 раза; б) уменьшится в 4 раза в) возрастет в 2 раза; г) возрастет в 4 раза; (уменьшится в 4 раза)
- 8. Записать константу равновесия реакции Si (TB)+ 4HCl (Γ) \leftrightarrow SiCl₄ (Γ) + 2H₂ (Γ) и определить, куда сместится равновесие при увеличении общего давления системы? (K= [SiCl₄] [H₂]²/ [HCl]⁴; вправо)
- 9. Какое из перечисленных воздействий приведет к изменению значения константы равновесия химических реакций: а) изменение давления; б) изменение температуры; в) замена катализатора; г) изменение концентраций реагирующих веществ. (б)
- 10. Какие процессы идут на катоде и аноде при электролитическом нанесении меди на пластины кремния из раствора CuSO₄ с медным анодом? (восстановление; окисление)

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Основные понятия химии: атом, молекула, простые и сложные вещества, относительные атомные и молекулярные массы, моль, валентность, эквивалент.
- 2. Основные законы химии: закон постоянства состава, закон эквивалентов, закон
- 3. Авогадро. Классы неорганических соединений: оксиды, основания, кислоты, соли (получения и свойства)
- 4. Квантово-механическая модель строения атома: опыты Резерфорда, постулаты теории Бора, ее недостатки. Уравнение Шредингера. Квантовые числа: главное, орбитальное, магнитное и спиновое
- 5. Распределение электронов в многоэлектронных атомах (принцип минимума энергии, принцип Паули, правило Хунда). Электронные и электронографические формулы (s-p-d-f-элементы).
- 6. Периодический закон Д.И. Менделеева и периодическая система. Периодическая система Д.И. Менделеева в свете представлений о сложном строении атома.
- 7. Периодически изменяющиеся свойства элементов: энергия ионизации (ионизационный потенциал), сродство к электрону, электроотрицательность. Изменение валентности в группах и периодах. Металлические и неметаллические свойства элементов и их соединений в периодической системе.
- 8. Химическая связь. Современные представления о механизме образования. химической связи. Основные положения метода валентных связей (МВС) и характеристики ковалентной связи: энергия образования, энергия разрыва связи, длина связи, полярность связи, направленность связи, насыщенность связи.
- 9. Гибридизация атомных орбиталей. Кратные связи. δ , π —связи. Донорноакцепторный механизм образования ковалентной связи. Валентность

элементов с точки зрения метода валентных связей.

- 10. Ионная связь. Условия образования связи, особенности веществ с ионным типом связи.
- 11. Метод молекулярных орбиталей (ММО). Металлическая связь. Межмолекулярные взаимодействия. Водородная связь. Комплексообразование.
- 12. Окислительно-восстановительные процессы. Степень окисления. Основные типы реакций окисления-восстановления. Окислительно-восстановительный эквивалент.
- 13. Первый закон термодинамики. Внутренняя энергия. Энтальпия. Теплоемкость, ее зависимость от температуры. Теплоты хим. реакций и закон Гесса, его следствие.
- 14. Равновесие и обратимые процессы. Самопроизвольные и несамопроизвольные процессы. Второй закон термодинамики. Энтропия. Изменение энтропии в обратимом и необратимом процессах. Принцип возрастания энтропии.
- 15. Термодинамические потенциалы (F, G). Критерии возможности самопроизвольного процесса и равновесия в закрытых системах.
- 16. Химическое равновесие. Закон действующих масс. Константы равновесия.
 - 17.Влияние температуры на химическое равновесие.
- 18. Общие понятия о скорости химических реакций. Скорость химической реакции. Гомогенные, гетерогенные системы, зависимость скорости реакции от температуры. Энергия активации
- 19. Уравнение Аррениуса. Катализаторы. Химическое равновесие. Константа равновесия: влияние изменения внешних факторов на химическое равновесие. Принцип Ле Шателье.
- 20. Классификация и общие свойства растворов. Способы выражения концентрации растворов. Теория образования растворов.
- 21. Растворы неэлектролитов. Законы Рауля и Генри. Повышение температуры кипения и понижение температуры замерзания. Осмотическое давление. Закон Вант Гоффа.
- 22. Растворы электролитов. Основные положения теории электролитической диссоциации растворов Аррениуса. Диссоциация солей, кислот, оснований.
- 23. Сильные и слабые электролиты. Реакции обмена в растворах электролитов. Константа диссоциации слабых электролитов. Закон разведения Оствальда.
- 24. Произведение растворимости. Ионное произведение воды. Водородный показатель pH.
- 25. Гидролиз солей. 9. Электрохимические процессы. Понятие об электродном потенциале. Формула Нернста.
- 26. Водородный электрод. Стандартные электродные потенциалы металлов в водных растворах (ряд напряжений металлов). Катодные и анодные процессы при работе гальванического элемента.

- 27. Электролиз. Катодные и анодные процессы. Электролиз растворов и расплавов солей. Законы электролиза Фарадея. Последовательность разряда ионов на электродах. Применение электролиза.
- 28. Общие свойства металлов (получение, физические и химические свойства (металлов).
 - 29. Характеристика d-элементов, их физические и химические свойства.
 - 30. Источники научно-технической информации в области химии.
 - 31. Источники справочной информации по химии и работа с ними.

7.2.5 Примерный перечень заданий для решения прикладных задач Не предусмотрено учебным планом

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачет проводится по тест-билетам, каждый из которых содержит 10 вопросов.

Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов – 10.

- 1. «Не зачтено» ставится в случае, если студент набрал менее 7 баллов.
- 2. «Зачтено» ставится в случае, если студент набрал от 7 до 10 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Теоретические основы химии: основные понятия и законы химии. Классы неорганических соединений.	УК-1, ОПК-1	Тест, защита лабораторных работ
2	Строение атома и периодическая система элементов Д.И. Менделеева.	УК-1, ОПК-1	Тест, защита лабораторных работ
3	Химическая связь. Реакции окисления - восстановления.	УК-1, ОПК-1	Тест, защита лабораторных работ
4	Основы химической термодинамики.	УК-1, ОПК-1	Тест, защита лабораторных работ
5	Кинетика химических реакций.	УК-1, ОПК-1	Тест, защита лабораторных работ
6	Дисперсные системы. Растворы. Электрохимические процессы. Общие свойства металлов.	УК-1, ОПК-1	Тест, защита лабораторных работ

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется

проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

- 8.1 Перечень учебной литературы, необходимой для освоения дисциплины
 - 1. Коровин Н.В. Общая химия: учебник. М.: Высш. шк., 2010.- 558 с.
- 2. Глинка Н.Л. Общая химия: учебник для бакалавров. / Н.Л. Глинка; под ред. В.А. Попкова, А.В Бабкова. -18-е изд., перераб и доп.- М.: Изд-во Юрайт, 2012.- 898 с.
- 3. Глинка Н.Л. Задачи и упражнения по общей химии: учебное пособие для вузов / Н.Л. Глинка; под ред. В. А. Рабиновича, Х. М. Рубиной. М.: ИнтегралПресс, 2011.- 240 с.
- 4. Глинка Н.Л. Общая химия: учебник. / Н.Л. Глинка; под ред. А.И. Ермаковой. М.: Интеграл-Пресс, 2005.- 730 с.
- 5. Корнеева В.В. Методические указания для самостоятельной подготовки и выполнения лабораторных работ № 1-6 по дисциплине «Химия» / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2015.- 50 с.
- 6. Корнеева В.В. Методические указания для самостоятельной подготовки и выполнения лабораторных работ № 7-10 по дисциплине «Химия» / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2015.- 39 с.
- 7. Корнеева В.В. Методические указания и контрольные задания для входного контроля знаний по теме «Классы неорганических соединений». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ» Электрон., 2012.- 40 с.
- 8. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Основные понятия и законы химии» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ» Электрон., 2012.- 35 с.
- 9. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Строение атомов и периодический закон» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2016.- 40 с.
 - 10. Корнеева В.В. Методические указания и контрольные задания для

проверки самостоятельной работы и контроля знаний по теме «Реакции окисления - восстановления» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А., Сушко Т.И. Воронеж: ГОУВПО «ВГТУ», 2010.- 32 с.

- 11. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Скорость химических реакций химическое равновесие» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ» Электрон., 2012.- 30 с.
- 12. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Растворы» дисциплины «Химия». / Корнеева А.Н., Небольсин В.А. Воронеж: ФГБОУ ВО «ВГТУ», 2015.- 39 с.
- 13. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Общие свойства металлов. Электрохимические процессы». / Корнеева А.Н., Небольсин В.А. Воронеж: ГОУВПО «ВГТУ»., 2009.- 38 с.
- 14. Маршалкин, М. Ф. Химия [Электронный ресурс] : учебное пособие / М. Ф. Маршалкин, И. С. Григорян, Д. Н. Ковалев. Электрон. текстовые данные. Ставрополь : Северо-Кавказский федеральный университет, 2015. 228 с. 27-8397. Режим доступа: http://www.iprbookshop.ru/63225.html
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Перечень программного обеспечения, используемого при осуществлении образовательного процесса:

- приложение Microsoft Power Point;
- текстовый редактор Microsoft Office Word.

Перечень информационно-справочных систем:

- единая информационная образовательная среда университета «ЭИОС»
 ВГТУ»;
 - электронная библиотечная система;
 - научная электронная библиотека eLIBRARY.RU.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Материально-техническая база для осуществления образовательного процесса по дисциплине, имеющаяся в распоряжении ВГТУ:

- для проведения занятий лекционного типа, практических (семинарских) занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, специализированная учебная аудитория 303/1, 417/2, 419/2 с комплектом учебной мебели;
- для самостоятельной работы обучающихся читальный зал и библиотечные каталоги научно-технической библиотеки ВГТУ; —

мультимедийное оборудование (ноутбук, проектор).

Перечень программных продуктов, используемых при проведении различных видов занятий – презентации в Power Point по темам курса.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Химия» читаются лекции, проводятся лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

соответствии с методиками, приведенными в указаниях к выполнению работ.				
Вид учебных занятий	Деятельность студента			
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом			
Лабораторная работа	занятии. Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.			
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.			
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом три дня эффективнее всего использовать для повторения и систематизации материала.			