МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета

УЛВ: А. Небольсин

((30)) abu

РАБОЧАЯ ПРОГРАММА

дисциплины

«Физика поверхности и границ раздела»

Направление подготовки 16.03.01 ТЕХНИЧЕСКАЯ ФИЗИКА

Профиль Физическая электроника

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2017

Автор программы

ешт / Янченко Л.И. /

Заведующий кафедрой

Физики твердого тела

Калинин Ю.Е. /

Руководитель ОПОП

/ Калинин Ю.Е. /

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Целью изучения дисциплины является – изучение структуры и состава поверхности, а также физических и химических явлений, происходящих на ней.

Дисциплина «Физика поверхности и границ раздела» объединяет разделы физики и химии, посвященные изучению физических и химических свойств поверхности конденсированных сред. Целью дисциплины является усвоение студентами представлений о физике процессов на поверхностях раздела сред, положенных в основу разнообразных методов диагностики свойств поверхности и приповерхностных областей твердых тел.

1.2. Задачи освоения дисциплины

Для достижения цели ставятся задачи:

изучение строения и основных свойств межфазных поверхностей;

рассмотрение основных физических и химических процессов на поверхности конденсированных сред;

получение представлений о современных экспериментальных методах исследования поверхности;

освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных профессиональных задач;

овладение фундаментальными принципами и методами решения научнотехнических задач;

умение ориентироваться в научно-технической информации;

формирование навыков по применению положений фундаментальной теории к грамотному научному анализу ситуаций, с которыми бакалавру придется сталкиваться при создании или использовании новой техники и новых технологий;

умение использовать физические принципы и законы, а также результаты экспериментальных открытий в тех областях техники, в которых они будут трудиться.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физика поверхности и границ раздела» относится к дисциплинам по выбору вариативной части блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Физика поверхности и границ раздела» направлен на формирование следующих компетенций:

ОПК-1 - способностью использовать фундаментальные законы природы и основные законы естественнонаучных дисциплин в профессиональной деятельности.

ДПК-2 - готовность учитывать тенденции развития современной науки, техники и технологии по выбранному профилю технической физики в своей профессиональной деятельности.

Компетенция	Результаты обучения, характеризующие
	сформированность компетенции
ОПК-1	знать основные понятия, законы и методы физики поверхности; современные методы определения состава, структуры, динамики и электронного строения приповерхностной области твердых тел и межфазных границ; системы энерго- и масс-анализа заряженных частиц строение поверхности твердых тел, понимать особенности в рас-
	положении атомов на поверхности по сравнению с расположением в объеме твердого тела; основные физические и химические процессы на поверхности конденсированных сред;
	уметь использовать знания, умения и навыки в области физики поверхности для прогноза свойств материалов и их реакционной способности;
	пользоваться теоретическими знаниями при анализе разнообразных явлений в твердых телах; истолковывать смысл физических величин и понятий;
	объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий
	владеть стандартной терминологией, определениями и обозначениями; методами обоснованного выбора исследовательского оборудования, оценкой эффективности его работы и адекватности поставленной конкретной задаче; анализом и оценкой полученных результатов и аргументацией для подтверждения сделанных на их основе выводов и принятых решений; рациональными методами анализа и обработки научно-технической информации; проводить качественные теоретические оценки явлений, происходящих на поверхности раздела фаз; навыками применения основных методов физико-
ДПК-2	математического анализа для решения естественнонаучных задач знать основные современные экспериментальные методы изуче-
	ния поверхности. уметь использовать современные методы адекватного физического и математического моделирования, а также применять методы физико-математического анализа к решению конкретных
	естественнонаучных и технических проблем владеть профессионально профилированными знаниями и практическими навыками в области физики поверхности и границ раздела;

Иметь представление:

о роли физико-химических процессов, протекающих на поверхности твердых тел и на границах раздела сред, в современной электронике, микроэлектронике и наноэлектронике (ОПК-1); об основных научно-технических проблемах и перспективах развития современной физики поверхности; о ее роли в создании приборов и устройств с качественно новыми характеристиками и в разработке принципиально новых технологий; о ее взаимосвязи со смежными областями науки и техники (ДПК-2).

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Физика поверхности и границ раздела» составляет 3 зачетные единицы.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Очная форма обучения						
Вид учебной работы	Всего	Семестры				
	часов	6				
Аудиторные занятия (всего)	54	54				
В том числе:						
Лекции	36	36				
Практические занятия (ПЗ)	18	18				
Лабораторные работы (ЛР)	-					
Самостоятельная работа	54	54				
Курсовой проект						
Контрольная работа						
Вид промежуточной аттестации – зачет	+	+				
Общая трудоемкость час	108	108				
зач. ед.	3	3				

Заочная форма обучения

Не предусмотрена учебным планом

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

No	Наименование	Содержание раздела	Лекц	Прак	Лаб.	CPC	Bce
п/п	темы			зан.	зан.		го,
							час
1	Поверхности	Термодинамика поверхностей твердых					
	твердых тел	тел					
		Анизотропия поверхностного натяже-					
		ния					
		Структура поверхности кристаллов.	12	6		18	36
		Реконструкция поверхности	12	Ü		10	30
		Огрубление поверхности					
		Фрактальные поверхности					
		Плавление поверхности					
		Поверхностная сегрегация в твердых					

		телах				
2	Электронная	Электронные состояния на поверхно-				
	структура по-	сти				
	верхности	Поверхности металлов				
		Контактная разность потенциалов	12	6	18	36
		Пространственный заряд вблизи ме-	12		10	
		таллической поверхности				
		Поверхности полупроводников				
		Поверхности диэлектриков				
3	Поверхности	Силы взаимодействия молекул с по-				
	раздела твер-	верхностью.				
	дое тело – газ	Потенциал Леннард-Джонса				
		Термодинамика адсорбции				
		Физическая и химическая адсорбция				
		Изотерма Ленгмюра				
		Уравнение БЭТ (Брунауер, Эммет,				
		Теллер)				
		Фазовые переходы в адсорбционных				
		слоях	12	6	18	36
		Деформация твердых тел при адсорб-				
		ции				
		Реконструкция поверхности под действием адсорбатов				
		Адсорбция на металлах				
		Адсорбция на полупроводниках				
		Влияние адсорбции на электронные				
		поверхностные состояния				
		Итого	36	18	54	108

Лекции

CEMECTP 6

$N_{\underline{0}}$	Тема лекции	Объем		
Π/Π		часов		
1	Поверхности твердых тел. Термодинамика поверхностей твердых тел.	4		
	Способы формирования новой поверхности по Гиббсу. Связь между по-			
	верхностным натяжением и поверхностным напряжением. Способы опре-			
	деления поверхностного натяжения твердых тел: метод «нулевой ползуче-			
	сти», метод разрушения (раскалывания), метод растворения, метод «ней-			
	тральной капли», метод «залечивающейся царапины».			
	Анизотропия поверхностного натяжения. Зависимость поверхностного			
	натяжения плоской поверхности кристалла от кристаллографической ори-			
	ентации этой поверхности. Грани с минимальным значением поверхност-			
	ной энергии. Изменение поверхностной энергии при слабом отклонении			
	поверхности от плотноупакованной грани. Образование системы ступеней			
	или террас. Понятие вицинальной поверхности, сингулярные грани. Опре-			
	деление формы кристалла по правилу Кюри-Вульфа.			
2	Структура поверхности кристаллов. Реконструкция поверхности. Опреде-	4		
	ление конфигурации атомов на перестроенной поверхности. Расшифровка			
	обозначения структуры адатомов. Влияние реконструкции на физику по-			
	верхностных явлений. Реконструкция поверхности как фазовый переход.			
	Влияние температуры на реконструкцию поверхности.			

	Огрубление поверхности. Эволюция поверхности при развитии ее шероховатости, показатель шероховатости. Аномалии в поведении избыточной свободной энергии образования ступени. Исчезновение кристаллической	
	огранки твердых тел.	
	Фрактальные поверхности. Характеристики фрактальных структур. Самоподобие, масштабная инвариантность, понятие и определение фрактальной размерности.	
3	Плавление поверхности. Квазижидкие пленки на различных поверхностях. Смена закона, отражающего зависимость толщины жидкой пленки от температуры при приближении к температуре плавления. Зависимость параметра порядка от расстояния до поверхности.	4
	Поверхностная сегрегация в твердых телах. Сегрегации в металлических	
	сплавах. Особенности сегрегации для частиц нанометрового размера (современные катализаторы). Уравнение Ленгмюра-Маклина для поверхностной концентрации. Учет электронной компоненты согласно квантовомеханических представлений.	
	Электронная структура поверхности. Электронные состояния на поверхности. Поверхностная зона Бриллюэна, двумерный волновой вектор. Таммовские состояния, состояния Шокли. Зонная структура периодического потенциала, моделирующего приповерхностную область кристалла.	
4	Поверхности металлов. Модели распределения электронной плотности вблизи металлической поверхности. Ход электростатического и полного (эффективного) потенциала вблизи поверхности металла.	4
	Контактная разность потенциалов. Распределение поля в области контакта	
	двух металлов, находящихся под углом Θ . Зависимость работы выхода у	
	кристаллов от ориентации граней. Контактная разность потенциалов меж-	
	ду двумя образцами из одного материала, но разного размера (микро- и нано- пленки и проволоки).	
	Пространственный заряд вблизи металлической поверхности. Равновесное	
	распределение эмитированных электронов вблизи металлической поверх-	
	ности. Термоэлектронная эмиссия. Зависимость величины дебаевского радиуса от температуры.	
5	Поверхности полупроводников. Устойчивые структуры поверхностей полупроводников кремния и германия. «Висящие» или «болтающиеся» связи на поверхности. Обратносвязанные поверхностные состояния. Структура зон и положение уровня Ферми легированного полупроводника при наличии поверхностных состояний. Связь между концентрацией избыточных электронов и величиной изгиба зон.	4
	Поверхности диэлектриков. Поверхностные состояния в молекулярных кристаллах инертных газов. Модель Маделунга поверхностных состояний для ионных кристаллов. Потенциал Маделунга. Расчет ширины запрещенной зоны по методу Зейтца.	
	Поверхности раздела твердое тело – газ. Силы взаимодействия молекул с поверхностью. Потенциал межмолекулярного взаимодействия. Три составляющие дальнодействующей части межмолекулярных сил: электростатическое взаимодействие, индукционное взаимодействие и дисперси-	
	онное взаимодействие. Полная энергия взаимодействия — ван-дерваальсово взаимодействие. Потенциал Леннард-Джонса. Решеточная сумма. Расчет потенциала взаи-	
	модействия газ — твердое тело в полярных координатах. Тангенциальная составляющая потенциальной энергии взаимодействия молекул с твердым	

	телом. Специфическая и неспецифическаяадсорбция.	
6	Термодинамика адсорбции. Изотерма адсорбции. Уравнение Гиббса для поверхностного давления. Закон идеального газа для давления в адсорбционном слое. Изменение свободной энергии при адсорбции. Изменение энтропии адсорбции. Дифференциальное изменение внутренней энергии. Расчет изостерической теплоты адсорбции.	4
	Физическая и химическая адсорбция. Характерные особенности. Переход адсорбции одного типа в адсорбцию другого типа. Оценка времени химической и физической адсорбции по теплоте адсорбции.	
	Изотерма адсорбции Генри. Понятие коэффициентов активности молекул в газе и адсорбционном слое. Константа Генри. Условие применимости изотермы адсорбции Генри.	
7	Изотерма адсорбции Ленгмюра. Отклонение от линейной зависимости изотермы адсорбции Генри. Содержание модели Ленгмюра. Использование уравнения изотермы Ленгмюра для графического определения из экспериментальных данных величины коэффициента Ленгмюра и адсорбции, соответствующей заполнению монослоя на поверхности. Случай конкурентной адсорбции многокомпонентной смеси газов.	4
	Уравнение БЭТ (Брунауер, Эммет, Теллер). Классификация типов изотерм адсорбции. Схема адсорбции по БЭТ. Графическое представление семейства типичных изотерм БЭТ.	
	Фазовые переходы в адсорбционных слоях. Учет взаимодействия молекул в адсорбционном слое. Появление S — образной формы у изотерм адсорбции. Изотерма адсорбции Хилла — де Бура. Зависимость стерической теплоты адсорбции от степени заполнения поверхности. Исследования фазовых переходов в адсорбционных слоях.	
8	Деформация твердых тел при адсорбции. Снижение поверхностной энергии при адсорбции газов на поверхности твердого тела. Термодинамические модели адсорбционного деформирования твердых тел. Физический смысл участков зависимости линейной деформации при адсорбции.	4
	Реконструкция поверхности под действием адсорбатов. Способы измерения изменений напряжений. Определение величины поверхностных напряжений. Два типа перестройки поверхности при адсорбции: фазовый переход смещения и структурный фазовый переход.	
	Адсорбция на металлах. Физическая адсорбция на металлах. Формирование на поверхности дипольного момента. Зависимость работы выхода от степени заполнения поверхности. Невозможность использования модели плотноупакованного слоя при монослойной адсорбции. Химическая адсорбция.	
9	Адсорбция на полупроводниках. Смещение положения уровня Ферми в зависимости от величины адсорбции в полупроводниках разных типов. Искривление зон при адсорбции на полупроводниках.	4
	Влияние адсорбции на электронные поверхностные состояния. Формирование двойного электрического слоя на поверхности полупроводника при адсорбции. Уравнение Пуассона для распределения носителей заряда в поверхностном слое. Вывод выражения для толщины граничного слоя и ее характерные численные значения. Влияние адсорбции на работу выхода с поверхности полупроводника. Изменение сродства электрона к поверхности полупроводника и изгиб зон при адсорбции.	
	Итого часов	36

Практические занятия

№	Тема практического занятия	Объ	Форма
Π/Π		ем	контроля
		ча-	
		сов	
1	Термодинамика поверхностных явлений	2	Решение задач
2	Атомная структура чистых поверхностей. Электронные свойства поверхности твердого тела	2	Решение задач
3	Современные физические методы исследования поверхности. Сканирующая зондовая микроскопия.	2	Решение задач
4	Адсорбция. Кинетика адсорбции.	2	Решение задач
5	Уравнение изотермы адсорбции Лэнгмюра	2	Решение задач
6	Теория полимолекулярной адсорбции БЭТ	2	Решение задач
7	Расчет гиббсовской адсорбции с использованием изотермы поверхностного натяжения. Определение молекулярных констант ПАВ	2	Решение задач
8	Катализ. Закономерности гетерогенного катализа	2	Решение задач
9	Заключительное занятие	2	Зачет
	Итого часов	18	

Самостоятельная работа студента (СРС) СЕМЕСТР 6

Неде-		Форма	Объ-
ЛЯ	Вид СРС	контроля	ем
семе-			часов
стра			
1-2	Основные свойства поверхности. Роль поверхности в различ-	Опрос	6
	ных физико-химических процессах. Термодинамика поверх-		
	ности. Уравнение Гиббса. Поверхностное натяжение.		
3-4	Равновесная форма поверхности кристалла и жидкости.	Решение	6
	Особенности электронной структуры поверхности. Поверхно-	задач	
	стные электронные состояния. Особенности поверхности по-	Доклад на	
	лупроводников и металлов.	семинаре	
	Природа атомарно-чистых поверхностей твердого тела. Ре-	_	
	лаксация и реконструкция поверхности. Поверхностные де-		
	фекты. Природа реальных поверхностей и межфазных границ.		
5-6	Физические методы исследования структуры и свойств по-	Реферат	6
	верхности твердых тел и межфазных границ Современные		
	методы исследования морфологии, структуры, химического		
	состава и дефектов поверхности: электронная микро-скопия и		
	дифракция электронов, сканирующая туннельная микроско-		
	пия и спектроскопия, атомно-силовая микроскопия, масс-		
	спектроскопия вторичных ионов, спектроскопия поглощения		
	рентгеновского излучения, спектроскопия фотоэлектронов.		
	Обработка поверхности и условия изменения ее свойств.		
7-8	Физические явления на поверхности Адсорбция-десорбция.	Семинар.	6

	пение
ность. Эффект поля. Фотоэффекты на поверхности полупроводников.	ач
динамики поверхностных явлений. Изотермы по- виу	плок- 6 Ум рос
	цение 6 ач
13-14 Катализ. Поверхностные центры в гетерогенном катализе. Закономерности гетерогенного катализа. Химическое модифицирование поверхности твердых тел Влияние химического состояния поверхности на физические и химические свойства твердых тел.	рос 6
	цение б ач
17.10 Потраторы и почети	ет. 6
17-18 Подготовка к зачету Зач	poc

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Не предусмотрено учебным планом

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУ-ТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетен-	Результаты обучения,, характеризующие	Критерии	Аттестован	Не аттестован
ция	сформированность компетенции	критерии оценивания	ATTCCTUBAH	HE ATTECTORAH
ОПК-1	знать основные понятия, законы и методы	Активная работа	Выполнение	Невыполне-
	физики поверхности; современные мето-	на практических	работ в срок,	ние работ в
	ды определения состава, структуры, ди-	занятиях, отве-	предусмотрен-	срок, преду-
	намики и электронного строения припо-	чает на теорети-	ный в рабочих	смотренный
	верхностной области твердых тел и меж-	ческие вопросы при зачете	программах	в рабочих программах
	фазных границ; системы энерго- и масс-	npn sa tere		программах
	анализа заряженных частиц			
	строение поверхности твердых тел, по-			
	нимать особенности в расположении			
	атомов на поверхности по сравнению с			
	расположением в объеме твердого тела;			
	основные физические и химические про-			
	цессы на поверхности конденсирован-			
	ных сред;			
	уметь использовать знания, умения и на-	Решение стан-	Выполнение	Невыпол-
	выки в области физики поверхности для	дартных прак-	работ в срок,	нение ра-
	прогноза свойств материалов и их реак-	тических задач,	предусмот-	бот в срок,
	ционной способности;	написание тес- товых заданий	ренный в ра- бочих про-	предусмот- ренный в
	пользоваться теоретическими знаниями	товых задании	граммах	рабочих
	при анализе разнообразных явлений в		- F	программах
	твердых телах;			
	истолковывать смысл физических вели-			
	чин и понятий;			
	объяснить основные наблюдаемые при-			
	родные и техногенные явления и эф-			
	фекты с позиций фундаментальных фи-			
	зических взаимодействий			
	владеть стандартной терминологией,	Решение при-	Выполнение	Невыпол-
	определениями и обозначениями; мето-	кладных задач	работ в срок,	нение ра-
	дами обоснованного выбора исследова-	в конкретной предметной	предусмот- ренный в ра-	бот в срок,
	тельского оборудования, оценкой эф-	предметной области, вы-	бочих про-	предусмот- ренный в
	фективности его работы и адекватности	полнение плана	граммах	рабочих
	поставленной конкретной задаче; ана-	самостоятель-	-	программах
	лизом и оценкой полученных результа-	ных работ		
	тов и аргументацией для подтверждения			
	сделанных на их основе выводов и при-			
	нятых решений; рациональными мето-			
	дами анализа и обработки научно-			
	технической информации;			
	проводить качественные теоретические			
	оценки явлений, происходящих на по-			
	верхности раздела фаз;			
	навыками применения основных мето-			
	дов физико-математического анализа			<u> </u>

	для решения естественнонаучных задач			
ДПК-6	знать основные современные эксперимен- гальные методы изучения поверхности	Активная ра- бота на прак- тических за- нятиях, отве- чает на теоре- тические во- просы при за- чете	Выполнение работ в срок, предусмотренный в рабочих программах	Невыпол- нение ра- бот в срок, предусмот- ренный в рабочих программах
	уметь использовать современные методы адекватного физического и математического моделирования, а также применять методы физико-математического анализа к решению конкретных естественнонаучных и технических проблем	Решение стандартных практических задач, написание тестовых заданий	Выполнение работ в срок, предусмотренный в рабочих программах	Невыпол- нение ра- бот в срок, предусмот- ренный в рабочих программах
	владеть профессионально профилированными знаниями и практическими навыками в области физики поверхности и границ раздела;	Решение при- кладных задач в конкретной предметной области, вы- полнение плана самостоятель- ных работ	Выполнение работ в срок, предусмотренный в рабочих программах	Невыпол- нение ра- бот в срок, предусмот- ренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 6 семестре для очной формы обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетен-	Результаты обучения, характеризующие	Критерии	Отлично	Хорошо	Удовл	Неудовл
ция	сформированность компетенции	оценива-				
07774		ния	-	_	_	
ОПК-1	знать основные понятия, законы и ме-	Тест	Выполне-	Выполне-	Выпол-	В тесте
	тоды физики поверхности; современ-		ние теста на		нение	менее
	ные методы определения состава,		90-100%	на 80-90%	теста на 70-80%	70% пра- вильных
	структуры, динамики и электронного				70-8070	ответов
	строения приповерхностной области					0150105
	твердых тел и межфазных границ; сис-					
	темы энерго- и масс-анализа заряжен-					
	ных частиц					
	строение поверхности твердых тел,					
	понимать особенности в расположе-					
	нии атомов на поверхности по сравне-					
	нию с расположением в объеме твер-					
	дого тела;					
	основные физические и химические					
	гроцессы на поверхности конденсиро-					
	ванных сред;					
	уметь использовать знания, умения и	Тест	Выполне-	Выпол-	Вы-	В тесте
	навыки в области физики поверхно-		ние теста	нение	полне-	менее
	1		на 90-	теста на	ние	70%

	сти для прогноза свойств материалов и их реакционной способности; пользоваться теоретическими знаниями при анализе разнообразных явлений в твердых телах; истолковывать смысл физических величин и понятий; объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий		100%	80-90%	теста на 70- 80%	пра- вильных ответов
	владеть стандартной терминологией, определениями и обозначениями; методами обоснованного выбора исследовательского оборудования, оценкой эффективности его работы и адекватности поставленной конкретной задаче; анализом и оценкой полученных результатов и аргументацией для подтверждения сделанных на их основе выводов и принятых решений; рациональными методами анализа и обработки научно-технической информации; проводить качественные теоретические оценки явлений, происходящих на поверхности раздела фаз; навыками применения основных методов физико-математического анализа для решения естественнонаучных задач	Тест	Выполнение теста на 90-100%	Выпол- нение теста на 80-90%	Вы- полне- ние теста на 70- 80%	В тесте менее 70% пра- вильных ответов
ДПК-6	знать основные современные экспериментальные методы изучения поверхности.	Тест	Выполнение теста на 90-100%	Выпол- нение теста на 80-90%	Вы- полне- ние теста на 70- 80%	В тесте менее 70% пра- вильных ответов
	уметь использовать современные методы адекватного физического и математического моделирования, а также применять методы физикоматематического анализа к решению конкретных естественнонаучных и технических проблем	Тест	Выполнение теста на 90-100%	Выпол- нение теста на 80-90%	Вы- полне- ние теста на 70- 80%	В тесте менее 70% пра- вильных ответов
	владеть профессионально профилированными знаниями и практическими навыками в области физики поверхности и границ раздела;	Тест	Выполнение теста на 90-100%	Выпол- нение теста на 80-90%	Вы- полне- ние теста на 70- 80%	В тесте менее 70% пра- вильных ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

Тема 1. Поверхности твердых тел

- 1 Как изменяется свободная энергия системы при образовании поверхности
 - а) увеличивается
 - б) уменьшается
 - в) не изменяется
- 2 Какие физические величины характеризуют изменение свободной энергии при образовании поверхности твердых тел
 - а) поверхностное натяжение
 - б) поверхностное напряжение
 - в) деформация
- 3 Поверхностное натяжение плоской поверхности кристалла
 - а) анизотропно
 - б) изотропно
 - в) постоянно
- 4 График зависимости поверхностного натяжения от угла отклонения от плотноупакованной грани имеет характер
 - а) возрастающей функции
 - б) убывающей функции
 - в) имеет минимумы
 - г) имеет максимумы
- 5 Правило Кюри-Вульфа позволяет определить
 - а) форму кристалла
 - б) объем кристалла
 - в) величину поверхности кристалла
 - г) свободную энергию поверхности
- 6 В каком случае происходит реконструкция поверхности кристалла
 - а) при нагревании
 - б) при действии механических напряжений
 - в) при приложении электрического поля
 - г) при образовании поверхности
- 7 В результате огрубления поверхность становится
 - а) ювенильной
 - б) вицинальной
 - в) фрактальной
- 8 Фрактальные структуры обладают свойством
 - а) масштабной инвариантности
 - б) перколяционной системы
 - в) симетрии

- 9 Фрактальная размерность выражается
 - а) целым числом
 - б) дробным числом
 - в) комплексным числом
- 10 Значение фрактальной размерности
 - а) больше топологической
 - б) меньше топологической
 - в) равна топологической
- 11 Поверхностная сегрегация приводит к
 - а) выравниванию концентрации
 - б) образованию двойного электрического слоя
 - в) изменению состава поверхности

Тема 2. Электронная структура поверхности

- 1 Волновые функции электрона на поверхности
 - а) периодичны вдоль поверхности кристалла
 - б) затухают при удалении от поверхности
 - в) возрастают при удалении от поверхности
- 2 Поверхностные состояния называют
 - а) состояния Шоттки
 - б) таммовскими
 - в) состояния Шокли
- 3 Модель распределения электронной плотности вблизи поверхности металла учитывает
 - а) электростатическое взаимодействие
 - б) обменно-корреляционное взаимодействие
 - в) нулевой уровень вакуума
 - г) кулоновское взаимодействие
 - д) гравитационное взаимодействие
- 4 Чем определяется величина контактной разности потенциалов
 - а) эффективной массой электрона
 - б) положением уровня Ферми
 - в) концентрацией носителей заряда
- 5 Напряженность электрического поля при удалении от точки контакта металлов
 - а) возрастает
 - б) не изменяется
 - в) убывает экспоненциально
 - г) убывает обратно пропорционально расстоянию
 - д) периодически изменяется
- 6 Вблизи металлической поверхности существует пространственный заряд, образованный вследствие
 - а) механической деформации
 - б) термоэлектронной эмиссии
 - в) туннельного эффекта

- 7 Утверждение о том, что на поверхности Si(111) существует сверхрешетка 7×7 характеризует
 - а) объемную структуру полупроводника
 - б) поворот кристаллической решетки
 - в) редко расположенные атомы на поверхности
 - г) густо расположенные атомы на поверхности
- 8 Поверхностные состояния изменяют зонную структуру
 - а) уменьшают ширину запрещенной зоны
 - б) увеличивают ширину запрещенной зоны
 - в) вызывают искривление зон
- 9 Модель Маделунга для расчета поверхностных состояний диэлектрика применима к
 - а) молекулярным кристаллам
 - б) ионным кристаллам
 - в) фотонным кристаллам
 - г) атомным кристаллам
- 10 Согласно схеме Зейтца величина запрещенной зоны на поверхности
 - а) больше, чем в объеме
 - б) меньше, чем в объеме
 - в) не изменяется

Тема 3 Поверхность раздела твердое тело – газ

- 1 Потенциал межмолекулярного взаимодействия для больших расстояний характеризует
 - а) силы притяжения
 - б) силы отталкивания
 - в) силы гравитации
 - г) куперовские пары электронов
- 2 Электростатическое взаимодействие при увеличении расстояния
 - а) возрастает
 - б) спадает по логарифмическому закону
 - в) спадает по закону 1/г
 - Γ) спадает по закону $1/r^6$
- 3 Индукционное взаимодействие при увеличении расстояния
 - а) возрастает
 - б) спадает по закону 1/г
 - в) спадает по закону $1/r^6$
- 4 Ван дер Ваальсово взаимодействие характеризует
 - а) оптический спектр
 - б) зонную структуру
 - в) потенциал взаимодействия двух молекул
- 5 Потенциал Леннард-Джонса следует применять
 - а) на больших расстояниях
 - б) на малых расстояниях
 - в) для наноразмерных областей

- 6 Что называют изотермой адсорбции
 - а) зависимость химического потенциала от давления газа
 - б) величину адсорбции как функцию давления газа
 - в) характер изменения свободной энергии от температуры
- 7 Изостерическая теплота адсорбции рассчитывается
 - а) при постоянной энтропии
 - б) при постоянной теплоте
 - в) при постоянном давлении
 - г) при постоянной адсорбции
- 8 Какой процесс протекает медленнее
 - а) химическая адсорбция
 - б) физическая адсорбция
- 9 Изотерма адсорбции Генри используется
 - а) на поздних стадиях адсорбции
 - б) на ранних стадиях адсорбции
 - в) как универсальный характер зависимости
- 10 Изотерма Лэнгмюра согласуется с экспериментом
 - а) при атмосферном давлении
 - б) при малых давлениях
 - в) при больших давлениях
- 11 Уравнение БЭТ (Брунауэр, Эммет, Теллер) характеризует
 - а) монослой
 - б) полимолекулярный адсорбционный слой
 - в) незаполненную поверхность
- 12 Фазовые переходы в адсорбционном слое обуславливают
 - а) плавный характер кривой изотермы
 - б) пик на соответствующей зависимости
 - в) гистерезис
 - д) S-образную форму
- 13 В ходе адсорбции на поверхности меняется характер деформации
 - а) сжатие сменяется растяжением
 - б) растяжение сменяется сжатием
 - в) деформация релаксирует

7.2.4Примерный перечень вопросов для подготовки к зачету

1.Поверхности твердых тел

Термодинамика поверхностей твердых тел

Анизотропия поверхностного натяжения

Структура поверхности кристаллов. Реконструкция поверхности

Огрубление поверхности

Фрактальные поверхности

Плавление поверхности

Поверхностная сегрегация в твердых телах

2. Электронная структура поверхности

Электронные состояния на поверхности

Поверхности металлов

Контактная разность потенциалов

Пространственный заряд вблизи металлической поверхности

Поверхности полупроводников

Поверхности диэлектриков

3. Поверхности раздела твердое тело – газ

Силы взаимодействия молекул с поверхностью.

Потенциал Леннард-Джонса

Термодинамика адсорбции

Физическая и химическая адсорбция

Изотерма Ленгмюра

Уравнение БЭТ (Брунауер, Эммет, Теллер)

Фазовые переходы в адсорбционных слоях

Деформация твердых тел при адсорбции

Реконструкция поверхности под действием адсорбатов

Адсорбция на металлах

Адсорбция на полупроводниках

Влияние адсорбции на электронные поверхностные состояния

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Не предусмотрено учебным планом

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Зачет с оценкой проводится по тест-билетам, каждый из которых содержит 10 вопросов, 10 стандартных задач и 10 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов -30.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 16 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 16 до 20 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

№	Контролируемые разде-	Код контролируемой	Наименование
Π/Π	лы (темы) дисциплины	компетенции (или ее	оценочного сред-
		части)	ства
1	Поверхности твердых	ОПК-1, ДПК-2	Тест, зачет, уст-
	тел		ный опрос
2	Электронная структура	ОПК-1, ДПК-2	Тест, зачет, уст-
	поверхности		ный опрос

3	Поверхности раз;	цела	ОПК-1, ДПК-2	Тест,	зачет,	уст-
	твердое тело - газ			ный оп	poc	

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Г.И. Епифанов Физика твердого тела Учеб. пособие СПб. : Лань, 2010. 288 с.
- 2. Владимиров Г.Г. Физика поверхности твердых тел СПб Лань 2016
- 3. Л.И. Янченко Методические указания к выполнению практических работ по дисциплине «Физика поверхности и границ раздела» для студентов направлений 16.03.01 «Техническая физика» (профиль «Физическая электроника»), очной формы обучения Воронеж, ВГТУ, 2015. 18 с. Эл
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

Microsoft Word, Microsoft Excel, Internet Explorer.

Автоматизированный измерительный комплекс сбора и предварительной обработки экспериментальных данных.

Графическая обработка экспериментальных данных Origin 8.0.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная плакатами и пособиями по профилю.

- 1. Лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.
- 2. Учебно-научная лаборатория "Нанотехнологии и наноматериалы".
- 3. Учебно-научная лаборатория "Технология материалов электронной техники".
- 4. Учебно-научная лаборатория "Физических методов исследования". Дисплейный класс, оснащенный компьютерными программами

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Физика поверхности и границ раздела» читаются лекции, проводятся практические занятия, выполняется самостоятельные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета инженерных систем теплогазоснабжения, подбора основного и вспомогательного оборудования. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится проверкой самостоятельных и тестовых заданий. Освоение дисциплины оценивается на зачете.

Вид учебных	Деятельность студента
занятий	
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и
П.	задать преподавателю на лекции или на практическом занятии.
Практические	Конспектирование рекомендуемых источников. Работа с конспектом
занятия	лекций, подготовка ответов к контрольным вопросам, просмотр ре-
	комендуемой литературы. Прослушивание аудио- и видеозаписей по
	заданной теме, выполнение расчетно-графических заданий, решение

	задач по алгоритму.
Подготовка к	При подготовке к зачету необходимо ориентироваться на конспекты
дифференциро-	лекций, рекомендуемую литературу и решение задач на практиче-
ванному зачету	ских занятиях.