МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

> УТВЕРЖДАЮ ТЕХНИЧЕС Декан ФМАТ « 31 » — 68 Ряжских В.И.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Новые конструкционные материалы» наименование дисциплины (модуля) в соответствии с учебным планом)

Направление подготовки (специальность) <u>15.04.01</u> <u>МАШИНОСТРОЕНИЕ</u> код и наименование направления подготовки/специальности									
Пиофия	(arrayus ayrasyyya)	ACCES MANAGEMENTS			D				
Профиль	(специализация)	Современные	технологии	производства	В				
	Машиностроении название профиля/программы								
Квалифика	ция выпускника _	магистр							
Нормативни	ый период обучени	ıя <u>2</u>	2 года / 2 года	и3 м.					
Форма обуч	ения Очная/Заочна	R	Очная/заочная)						
Год начала	подготовки <u> 2021 г.</u>								
Автор(ы) про	ограммы	должность и подпись	В.С	Ф. Селиванов					
Заведующий	кафедрой								
технологии с	варочного	PV							
	а и диагностики ы, реализующей дисциплину	- noonucs	В.	Ф. Селиванов					
Руководител	ь ОПОП	Mary C	A.I	 Болдырев 					
			1-						

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

ознакомление с новыми группами конструкционных материалов и их эффективным применением в изделиях машиностроения, аэрокосмической техники

1.2. Задачи освоения дисциплины

студентов современными разработками ознакомить новых металлических неметаллических конструкционных материалов, принципами рационального выбора материалов для конструкций с учетом особенностей их эксплуатации при обеспечении надежности и стабильности работы изделий; научить студентов разрабатывать методы стандартных испытаний определению физико-механических технологических показателей конструкционных материалов, использовать полученные знания для решения конкретных задач, связанных с созданием и эксплуатацией конструкций.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Новые конструкционные материалы» относится к дисциплинам обязательной части блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Новые конструкционные материалы» направлен на формирование следующих компетенций:

Компетенция	Результаты обучения, характеризующие
	сформированность компетенции
ОПК-10. Способен	Знает новые конструкционные материалы, применяемые в
разрабатывать	изделиях машиностроения и аэрокосмической техники
методы	Умеет оценивать поведение материалов при воздействии на них
стандартных	различных эксплуатационных факторов; обосновывает выбор
испытаний по	конструкционных материалов, исходя из условий работы,
определению	обеспечения надежности и стабильности работы изделий.
физико-	Владеет специальной терминологией и представлениями о
механических	перспективах развития современных конструкционных
свойств и	материалов. Владеет методикой выбора методов определения
технологических	физико-механических свойств и технологических показателей
показателей	используемых материалов
используемых	
материалов и	
готовых изделий	

(для каждой компетенции приводятся результаты обучения по дисциплине (знать, уметь, владеть), согласованные с индикаторами достижения компетенций, сформулированными в ОПОП)

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Новые конструкционные материалы» составляет 4 зачетных единиц

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Вид учебной работы		Всего	C	еместры	
		часов	1	2	
Аудиторные занятия (всего)		28	28	28	
В том числе:					
Лекции		20	10	10	
Практические занятия (ПЗ)		36	18	18	
Лабораторные работы (ЛР)		-	-	-	
Самостоятельная работа		88	44	44	
Курсовой проект(работа) (есть, нет)		нет	нет	нет	
Контрольная работа(есть, нет)		нет	нет	нет	
Вид промежуточной аттестации (зачет, зачет с оценкой, экзамен)		зачет, зачет с оценкой	зачет	зачет с оценкой	
Общая трудоемкость	ас	144	72	72	
зач.	ед.	4	2	2	

Заочная форма обучения

Вид учебной работы		C	Семестры	
	часов	1	2	
Аудиторные занятия (всего)	16	8	8	
В том числе:				
Лекции	8	4	4	
Практические занятия (ПЗ)	8	4	4	
Лабораторные работы (ЛР)	_	-		
Самостоятельная работа	128	64	64	
Курсовой проект(работа) (есть, нет)	нет	нет	нет	
Контрольная работа(есть, нет)	нет	нет	нет	
Вид промежуточной аттестации (зачет, зачет с оценкой, экзамен)	зачет, зачет с оценкой	зачет	зачет с оценкой	
Общая трудоемкость час	c 144	72	72	
зач. е	д. 4	2	2	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Материалы в современной технике. Классификация конструкционных материалов. Материалы с особыми свойствами	Классификация конструкционных материалов. Композиционные материалы, их виды и классификация. Слоистые и структурные композиционные материалы. Материалы с особыми свойствами. Жаростойкие, коррозионностойкие и жаропрочные сплавы. Материалы с высоким сопротивлением ударным и циклическим нагрузкам. Керамические материалы и покрытия. Нанокерамика.	4	8	12	24
2	Перспективные конструкционные материалы на основе железоникелевых сплавов.	Железоникелевые сплавы, классификация, основные характеристики и особенности. Жаростойкие, коррозионностойкие и жаропрочные сплавы. Области применения.	2	4	12	18
3	Перспективные конструкционные материалы на основе медноникелевых сплавов.	Перспективные конструкционные материалы на основе медноникелевых сплавов.классификация, свойства и области применения.	2	4	12	18
4	Перспективные металлические и неметаллические композиционные материалы в аэрокосмической технике.	Перспективные металлические и неметаллические композиционные материалы в аэрокосмической технике. Армированные и «интеллектуальные» композиты. Полимерные нанокомпозиты. Бороволокниты. Карбоволокниты. Композиционные сплавы с ориентированной структурой. Клеевые препреги. Слоистые алюмополимерные композиционные материалы	6	12	24	42
5	Методы определения физико-механических свойств и технологических показателей конструкционных материалов и изделий из них	Стандартные типовые методы определения механических свойств материалов, структурных и эксплутационных характеристик. ГОСТы на механические испытания. Методы определения напряжений и деформаций в конструкциях.	4	6	24	34
6	Принципы рационального выбора материалов для конструкций	Принципы рационального выбора материалов для конструкций с учетом особенностей их эксплуатации при обеспечении надежности и стабильности работы изделий.	2	2	4	8
		Итого	20	36	88	144

заочная форма обучения

	300 1101 00 11011					
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Материалы в современной технике. Классификация конструкционных	Классификация конструкционных материалов. Композиционные материалы, их виды и классификация. Слоистые и структурные композиционные материалы. Материалы с особыми свойствами.	2	2	22	41

		are v				
	материалов.	Жаростойкие, коррозионностойкие и				
	Материалы с	жаропрочные сплавы. Материалы с				
	особыми	высоким сопротивлением ударным и				
	свойствами	циклическим нагрузкам. Керамические				
		материалы и покрытия. Нанокерамика.				
2	Перспективные	Железоникелевые сплавы, классификация,				
	конструкционные	основные характеристики и особенности.				
	материалы на	Жаростойкие, коррозионностойкие и	0.5	1	16	45
	основе	жаропрочные сплавы.	0,5	1	10	43
	железоникелевых	Области применения.				
	сплавов.					
3	Перспективные	Перспективные конструкционные				
	конструкционные	материалы на основе медноникелевых				
	материалы на	сплавов.классификация, свойства и области	0.5	1	1.0	4.4
	основе	применения.	0,5	1	16	44
	медноникелевых	*				
	сплавов.					
4	Перспективные	Перспективные металлические и				
,	металлические и	неметаллические композиционные				
	неметаллические	материалы в аэрокосмической технике.				
	композиционные	Армированные и «интеллектуальные»				
	материалы в	композиты. Полимерные нанокомпозиты.				
	аэрокосмической	Бороволокниты. Карбоволокниты.	2-	2-	35	41
	технике.	Композиционные сплавы с				
	TEXTIFICE.	ориентированной структурой. Клеевые				
		препреги. Слоистые алюмополимерные				
		композиционные материалы				
5	Методы					
3	методы определения физико-	Стандартные типовые методы определения механических свойств материалов, структурных и				
	определения физико- механических свойств и	эксплутационных характеристик. ГОСТы на				
	технологических	механические испытания.	2	1	35	
	показателей					
	конструкционных					
	материалов и					
	изделий из них	T .				
6	Принципы	Принципы рационального выбора				
	рационального	материалов для конструкций с учетом				
	выбора материалов	особенностей их эксплуатации при	1	1	4	
	для конструкций	обеспечении надежности и стабильности				
		работы изделий.				
		Итого	8	8	128	144

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы).

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации

оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-10	Знает новые конструкционные материалы, применяемые в изделиях машиностроения и аэрокосмической техники	Знает основные группы перспективных конструкционных материалов и области их применения, активная работа на практических семинарских занятиях, отвечает на теоретические вопросы при защите реферата	Соответствие критерию	Не соответствие критерию
	Обосновывает выбор конструкционных материалов, исходя из условий работы, обеспечения надежности и стабильности работы изделий.	Может предложить конструкционный материал, исходя из условий работы, обеспечения надежности и стабильности работы изделий.	Соответствие критерию	Не соответствие критерию
	Владеет специальной терминологией и представлениями о перспективах развития современных конструкционных материалов.	Владеет представлениями о перспективах развития современных конструкционных материалов.	Соответствие критерию	Не соответствие критерию

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются для очной формы обучения и для заочной формы обучения в 1 семестре в форме зачёта по уровню «зачтено» и «не зачтено», во 2 семестре в форме зачёта с оценкой по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-1	Знает новые конструкционные материалы, применяемые в изделиях машиностроения и аэрокосмической техники	Выполнение теста	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 60- 70%	В тесте менее 60% правильн ых ответов
	Умеет оценивать поведение материалов при воздействии на них различных эксплуатационных факторов;	Выполнение теста	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 60- 70%	В тесте менее 60% правильн ых ответов

обосновывает выбор конструкционных материалов, исходя из условий работы, обеспечения надежности и стабильности работы изделий.					
Владеет специальной терминологией и представлениями о перспективах развития современных конструкционных материалов. Владеет методикой выбора методов определения физикомеханических свойств и технологических показателей используемых материалов	Выполнение теста	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 60-70%	В тесте менее 60% правильн ых ответов

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Какой материал относится к группе сильхромов
- 40X9C2
- X11МФ
- XH78T
- 12X1MФ.
- 2. Какой материал относится к группе нимоников
- ХН77ТЮ
- XH78T
- ХН60Ю
- 17X18H9
- 3. Какой материал относится к группе жаропрочных
- -ХН77ТЮ
- 08X17T
- !5X6CЮ
- все перечисленные.
- 4. К какой группе относится материал на основе ВN
- керметы
- оксидная керамика
- алмазоподобные соединения
- ни к одной из перечисленных.
- 5. какой метод поволяет получить ячеистый материал с пористостью до 98%

- вспенивание расплава
- изготовление порошкового шликера
- электролитическое осаждение на каркас полиуретана
- любой из перечисленных методов.
- 6. Какой метод является наиболее экономичным при получении ячеистых материалов
- свободное спекание
- горячее прессование
- вспенивание расплава
- электролитическое осаждение на полиуретановый каркас.
- 7. Какие свойства материалов относят к технологическим
- обрабатываемость резанием
- свариваемость
- жидкотекучесть
- все перечисленные
- 8. Какой матеоиал относится к алюмостеклопластика
- АЛОР
- СИАЛ
- АЛКАР
- все перечисленные.
- 9. Какие компоненты входят в сплав платинит

Ni-Fe-C

Ni-Pt- Fe

Pt-Ni-Ti

Pt-Ni-C/

- 10. какой из сплавов обладает эффектом «памяти»
- карбид титана
- борид никеля
- никилид титана
- алюминид титана.

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Выберите наиболее точный метод определения износа детали
- микрометрический метод
- метод искусственных баз
- метод радиоактивных изотопов
- метод анализа масла на содержание металла.
- 2. Выберите метод определения технологического свойства материала
 - определение усталостной прочности
 - определение износостойкости
 - определение свариваемости
 - определение коррозионной стойкости.
 - 3. Выберите международный стандарт для проведения стойкостного

испытания при оценке обрабатываемости резанием

- ISO 3685
- ISO 4684
- ISO 7215
- ISO3675/
- 4. Выберите наиболее точный метод оценки обрабатываемости резанием конструкционных материалов
 - метод торцевого точения
 - метод эквивалентной интенсивности износа
 - метод стойкостного исследования
 - метод радиоактивных изотопов.
- 5. Выберите метод для оценки способности листового конструкционного материала к обработке давлением
 - метод вытяжки сферической лунки
 - метод перегиба
 - оба указанных
 - ни один из указанных.
- 6. Выберите метод для определения эксплуатационных характеристик материала
 - усталостные испытания
 - испытания на износостойкость
 - оба указанных
 - ни один из указанных.
 - 7. Выберите метод определения хладноломкости стали
- сериальные испытания при разных температурах определяют ударную вязкость на образцах с надрезом, по результатам строится сериальная кривая.
 - -охлаждают пять образцов до -50 $^{\circ}$ C и испытывают на разрыв
 - охлаждают серию образцов до -70 °C и испытывают на изгиб
 - все перечисленные методы пригодны.
- 8. Определите стандарт для проведения испытаний на определение характеристик трещиностойкости (вязкости разрушения) при статическом нагружении конструкционных материавлов
 - ΓOCT 25.506-85
 - ΓOCT 25.502-79
 - *ΓΟCT 6032-2017*
 - ΓOCT 1497-84.
- 9. Выберите наиболее распространенный метод оценки жидкотекучести для материалов с относительно высокой жидкотекучестью
 - спиральная проба
 - -шариковая проба
 - клиновая проба
 - *U-образной проба.*
 - 10. Выберите стандарт для определения механических свойств

композитов керамических

- ΓΟCT P 57752-2017
- *ΓΟCT P 56785-2015*
- *ΓΟCT P 56800-2015*
- ΓΟCT 34370-2017.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Определите материал, обладающий наилучшей жаростойкостью при 1000 ° С.
 - A. X5M
 - Б. 10Х23Н18
 - B. X25T
 - Д. ЭП708
- 2. Определите лучший по жаропрочности сплав, для длительной работы в окислительной газовой среде
 - A. 40X9C2
 - Б. ВХ-2
 - *B. XH38BT*
 - Д. САП-4
- 3. Определите группу сплавов, не способных работать под нагрузкой при 900 °C.
 - А. Нимоники
 - Б. Нихромы
 - В. Сильхромы
 - Д. Хромистые сплавы
- 4. Назначьте вид механических испытаний для определения степени жаропрочности сплава
 - А. Испытания на ползучесть при температуре эксплуатации.
 - Б. Испытания на удар при температуре эксплуатации.
 - В. Испытания на растяжение при температуре 300 °C.
 - Д. Испытания на ползучесть при 300°C.
- 5. Назначьте материал, обладающий наилучшим сопротивлением ударным нагрузкам при минимальном удельном весе, обеспечивающий критерий $M=5,3\cdot 10^3$
 - А. Горячепрессованный карбид бора.
 - Б. Горячепрессованный диборид титана
 - В. Карбид кремния.
 - Д. Спечённый оксид алюминия.
- 6. Определите материал, для тепловой защиты внутренних стенок камер сгорания ЖРД
 - А. Диоксид циркония, стабилизированный оксидом кальция.
 - Б. Оксид алюминия.
 - В. Диоксид кремния, стабилизированный оксидом кальция.
 - Д. Карбид кремния.

- 7. Выберите из приведенных материалов, сплав оптимально подходящий для изготовления гребного морского винта
 - А. Куниаль
 - Б. Нейзильбер.
 - В. Хромансиль.
 - Г. Инвар
- 8. Определите материал, пригодный для изготовления деталей горячего тракта ГТД
 - A. 30XMA
 - Б. 10Х18Н9Т
 - В. ХН77ТЮР
 - Γ . 0X17T
- 9. Выберите материал, наиболее подходящий для работы в трубной обвязке с сохранением размеров при криогенных температурах 20 К и сохраняющий вязкость до 4 К
 - А. Ковар
 - Б. Инвар
 - В. Монель.
 - Γ. Inconel 625
- 10. Определите перспективный нанокерамический материал областью применения которого являются термоэлектрические модули, силовые полупроводники, светодиоды
 - A. алюмооксидная керамика на основе Al_2O_3
 - Б. карбидная керамика на основе SiCu B₄C
 - В. нитридная керамика на основе AlN
 - \mathcal{I} . циркониевая керамика на основе ZrO_2

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Композиционные материалы, их виды и классификация.
- 2. Жаростойкие, коррозионностойкие сплавы.
- 3. Жаропрочные сплавы.
- 4. Материалы с высоким сопротивлением ударным и циклическим нагрузкам.
- 5. Керамические материалы и покрытия.
- 6. Железоникелевые сплавы. Области применения.
- 7. Медно-никелевые сплавы. Области применения.
- 8. Металлические композиционные материалы. Перспективы их применения.
- 9. Неметаллические композиционные материалы. Перспективы их применения.
- 10. Перспективные металлические и неметаллические композиционные материалы.
- 11.Стандартные методы определения физико-механических свойств и технологических показателей конструкционных материалов
- 12 Стандартные методы определения технологических показателей конструкционных материалов

- 13. Методы определения эксплуатационных характеристик конструкционных материалов и изделий из них.
- 14. Алгоритм выбора материала, исходя из условий работы изделия, обеспечения надежности и стабильности работы изделия.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Не предусмотрено учебным планом.

7.2.6 Примерный перечень тем индивидуальных творческих заданий

Примеры тем индивидуальных творческих заданий:

- 1. Перспективные конструкционные материалы на основе медно-никелевых сплавов.
- 2. Перспективные конструкционные материалы на основе железоникелевых сплавов.
- 3. Коррозионностойкие и жаростойкие стали и сплавы.
- 4. Перспективные конструкционные материалы на основе керамик.
- 5. Перспективные покрытия на основе керамики и керметов.
- 6. Перспективные неметаллические композиты.
- 7. Перспективные композиты, используемые в авиастроении.
- 8. Перспективные конструкционные материалы с ячеистой структурой.

7.2.7. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится на основе аттестационного задания (тестового задания) по вопросам к зачету с учетом оценки за творческое задание.

Оценка за задание выставляется по соответствии ответа критериям оценивания, изложенным в разделе 7.1.2. Итоговый балл (средний балл) учитывает балл выполнения аттестационного задания и балл индивидуального творческого задания текущего контроля.

Оценка «неудовлетворительно» выставляется в случае отсутствия твердых знаний, или не соответствия критериям оценки «удовлетворительно» при ответе на вопросы аттестационного задания.

7.2.8 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Материалы в современной технике. Классификация конструкционных материалов. Материалы с особыми свойствами	ОПК-10	Тест, устный опрос, требования к индивидуальному творческому заданию, зачёт
2	Перспективные конструкционные материалы на основе железоникелевых сплавов.	ОПК-10	Тест, устный опрос, требования к индивидуальному творческому заданию, зачёт
3	Перспективные конструкционные материалы на основе медноникелевых сплавов.	ОПК-10	Тест, устный опрос,

			требования к индивидуальному творческому заданию, зачёт
4	Перспективные металлические и неметаллические композиционные материалы в Аэрокосмической технике.	ОПК-10	Тест, устный опрос, требования к индивидуальному творческому заданию, зачёт
5	Методы определения физико-механических свойств и технологических показателей конструкционных материалов и изделий из них		Тест, устный опрос, зачёт
6	Принципы рационального выбора материалов для конструкций	ОПК-10	Устный опрос, зачёт

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Оценка знаний умений и навыков по дисциплине «Новые конструкционные материалы» осуществляется посредством устного опроса, оценки индивидуальных творческих заданий (рефератов), зачёта.

Устные опросы проводятся во время практических семинарских занятий и при проведении зачёта в качестве дополнительных вопросов при недостаточности информации для оценки. Устные опросы необходимо строить так, чтобы вовлечь в тему обсуждения максимальное количество обучающихся, проводить параллели с уже пройденным материалом учебной дисциплины и другими курсами программы, приводить примеры для увеличения эффективности запоминания материала на ассоциациях.

Основные вопросы не должны выходить за рамки темы занятий и доводится до сведения на предыдущем занятии.

При оценке ответов на устный опрос анализу подлежит точность и полнота формулировок, обоснованность высказываемых суждений и целостность изложения материала.

При оценке творческого задания по заданной теме используются следующие критерии:

- соответствие содержания реферата заявленной тематике;
- полнота и глубина изложения материала (учитывается количество усвоенных факторов, понятий и т. п.);
- сознательность изложения материала (учитывается понимание излагаемого материала);
- логика изложения материала (учитывается умение строить целостный, последовательный рассказ, грамотно пользоваться специальной терминологией);
- рациональность использованных приемов и способов решения учебной задачи (учитывается умение использовать наиболее эффективные и современные способы достижения цели);
- актуальность используемой информации и баз данных (учитывается их соответствие современному уровню науки и техники);
 - использование дополнительного материала (обязательное условие);
 - рациональность использования времени, отведенного на

представление творческого задания (не одобряется затянутость доклада и устных ответов во времени, с учетом индивидуальных особенностей студентов).

В промежуточной аттестации в итоговый балл включается балл текущего контроля: итоговый балл (средний балл) учитывает балл выполнения аттестационного задания и балл индивидуального творческого текущего контроля. Оценка аттестационного задания испытания выставляется согласно методике выставления оценки при проведении промежуточной аттестации. Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Материаловедение/ Под ред. Б.Н. Арзамасова и др. — М.: Из-во МГТУ им. Баумана. — 2009 г.

Носов В.В. Механика композиционных материалов. Лабораторные работы и практические занятия/ В.В. Носов. - 2-е изд., перераб. и доп. - Издательство:Лань.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Базы данных и аналитические публикации на портале «Университетская информационная система Россия» - https://uisrussia.msu.ru/; Информационная система eLIBRARY.RU; Доступ свободный

www.elibrary.ru.

MS Office;

VS Windows:

Браузер Яндекс;

Профессиональные стандарты. Доступ свободный: http://profstandart.rosmintrud.ru

Информационная система eLIBRARY.RU; Доступ свободный www.elibrary.ru

«Техэксперт» - профессиональные справочные системы; Доступ свободный http://техэксперт.рус/

Информационная система «ТЕХНОРМАТИВ»; Доступ свободный https://www.technormativ.ru/

База данных Института металлургии и материаловедения им. А. А. Байкова РАН; Доступ свободный http://www.imet-db.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также помещения для самостоятельной работы, укомплектованные специализированной мебелью и техническими средствами обучения для представления учебной информации большой аудитории.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Новые конструкционные материалы» читаются лекции, проводятся практические семинарские занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на закрепление знаний, умений и навыков. Занятия проводятся путем интерактивного обсуждения тем лисциплины и творческих заланий (рефератов) студентов в аудитории.

диециплины и твор теских задании (рефератов) студентов в аудитории.					
Вид учебных занятий	Деятельность студента				
Лекция	Написание конспекта лекций: кратко, схематично, последовательно				
	фиксировать основные положения, выводы, формулировки,				
	обобщения; помечать важные мысли, выделять ключевые слова,				
	термины. Проверка терминов, понятий с помощью энциклопе				
	словарей, справочников с выписыванием толкований в тетр				
	Обозначение вопросов, терминов, материала, которые вызывают				
	трудности, поиск ответов в рекомендуемой литературе. Если				
	самостоятельно не удается разобраться в материале, необходимо				
	сформулировать вопрос и задать преподавателю на лекции или на				
	практическом занятии.				

П	Ir.				
Практическое	Конспектирование рекомендуемых источников. Работа с конспектом				
занятие	лекций, подготовка ответов к контрольным вопросам, просмотр				
	рекомендуемой литературы. Прослушивание аудио- и видеозаписей по				
	заданной теме, выполнение расчетно-графических заданий, решение				
	задач по алгоритму. Представление и защита индивидуальных				
	творческих заданий.				
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения				
работа	учебного материала и развитию навыков самообразования.				
	Самостоятельная работа предполагает следующие составляющие:				
	- работа с текстами: учебниками, справочниками, дополнительной				
	литературой, а также проработка конспектов лекций;				
	- выполнение домашних заданий и расчетов;				
	- работа над темами для самостоятельного изучения;				
	- участие в работе студенческих научных конференций, олимпиад;				
	- подготовка к промежуточной аттестации.				
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в				
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться не				
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные				
	перед зачетом с оценкой, зачетом с оценкой три дня эффективнее всего				
	использовать для повторения и систематизации материала.				

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

№ п/п	Перечень вносимых изменений Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных	Дата внесения изменений 31.08.2022	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
	профессиональных баз данных и справочных информационных систем		
	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	31.08.2023	
	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	31.08.2024	