МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ
Дека: факультета радиотехники и электроники
____/ В.А. Небольсин /
« 19 » _ июня_ 2020 г.

РАБОЧАЯ ПРОГРАММА

дисциплины (модуля)

«Основы автоматизированного проектирования приборов и систем»

Направление подготовки (специальность) 12.03.01 — Приборостроение Профиль (специализация) Приборостроение Квалификация выпускника Бакалавр Нормативный период обучения 4 года / 4 года 11 месяцев Форма обучения Очная / Заочная Год начала подготовки 2020 г.

Автор программы // Макаров О.Ю./

Заведующий кафедрой конструирования и производства радиоаппаратуры // Башкиров А.В./

Руководитель ОПОП // Муратов А.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Состоят в овладении теоретическими знаниями, практическими навыками и умениями решения задач проектирования электронной и механической частей приборов и специализированных технических систем с помощью методов и средств автоматизации проектных работ, использующих современные информационные технологии, методы математического моделирования и оптимизации.

1.2. Задачи освоения дисциплины

Изучение возможностей и особенностей применения и развития современных САПР, методов, математического обеспечения и процедур синтеза, анализа, оптимизации конструкций и технологических процессов производства, верификации и принятия проектных решений. Приобретение знаний о принципах построения и особенности современных САПР, методах, средствах и процедурах синтеза, анализа, оптимизации схем и конструкций приборов и систем, верификации и принятия проектных решений; о современных программных комплексах проектирования приборов и их систем, технических средствах, применяемых в САПР, основных направлениях развития и совершенствования САПР; основных типах математических моделей, используемых для различных аспектов и уровней приборов и систем, математических постановках и методах автоматизированного решения задач функционального и конструкторского синтеза, анализа процессов различной физической природы в приборах и оптимизации конструкций приборов и их систем; методах и алгоритмах, применяемых для решения типовых задач синтеза и анализа, решаемых в ходе функционального и конструкторского проектирования приборов и систем. Освоение умений осуществлять математическую постановку типовых задач и выбирать эффективные методы и средства автоматизированного синтеза и анализа схем и конструкций приборов и систем; выполнять проектные процедуры с использованием современных программных комплексов автоматизированного проектирования; оценивать и выбирать наиболее эффективное математическое и программное обеспечение для автоматизации проектных работ. Приобретение навыков выбора и формирования математических моделей объекта проектирования, методов и средств решения задач конструктивного синтеза, комплексного анализа и оптимизации различных характеристик приборов и систем.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы автоматизированного проектирования приборов и систем» относится к дисциплинам части, формируемой участниками образовательных отношений, блока Б.1 учебного плана.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Основы автоматизированного проектирования приборов и систем» направлен на формирование следующих компетенций:

ПК-2 – готовность проектировать и конструировать типовые детали и узлы с использованием стандартных средств компьютерного проектирования.

ПК-3 – готовность составлять отдельные виды технической документации, включая технические условия, описания, инструкции и другие документы.

Компетенция Результаты обучения, характеризующие							
компетенция							
	сформированность компетенции						
ПК-2	Знать основные понятия процесса проектирования, структуру и классификацию САПР, виды обеспечения САПР, место САПР в интегрированных системах, взаимосвязь САПР с другими системами и						
	систем технологического проектирования						
	Уметь использовать методики проектирования при разработке узлов						
	и деталей различных конструкций						
	владеть навыками применения современных средств и комплексов						
	автоматизированного проектирования для решения задач разработ-						
	ки и моделирования различных характеристик приборов и навыка-						
	ми подготовки принципиальных и монтажных электрических схем, чертежей по результатам автоматизированного синтеза и анализа						
ПК-3	Знать технологии объектно-ориентированного анализа и проектирования, методики проектирования и информационной поддержки этапов проектирования						
	Уметь разрабатывать комплект технической документации проекта,						
	использовать анализ вариантов и выбирать компромиссные вариан-						
	ты, разрабатывать проектную и техническую документацию для раз-						
	личных конструкций						
	владеть навыками использования существующих пакетов и при-						
	кладных программ при выполнении различных работ, способностью						
	формировать законченное представление о принятых решениях и						
	полученных результатах						

4. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общая трудоемкость дисциплины «Основы автоматизированного проектирования приборов и систем» составляет 6 зачетных единиц.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

O man cop icinn					
Вид учебной работы	Всего		Семестры		
	часов	8	8		
Аудиторные занятия (всего)	84	84			
В том числе:					
Лекции	24	24			
Практические занятия (ПЗ)	12	12			
Лабораторные работы (ЛР)	48	48			
Самостоятельная работа	105	105			

Курсовой проект	+	+		
Контрольная работа				
Вид промежуточной аттестации – зачет с				
оценкой				
Вид промежуточной аттестации – экзамен	+	+		
Общая трудоемкость час	216	189		
экзам. ед	ζ.	27		

Заочная форма обучения

Вид учебной работы	Всего		Семес	тры	
	часов	10			
Аудиторные занятия (всего)	28	28			
В том числе:					
Лекции	8	8			
Практические занятия (ПЗ)	4	4			
Лабораторные работы (ЛР)	16	16			
Самостоятельная работа	179	179			
Курсовой проект	+	+			
Контрольная работа					
Вид промежуточной аттестации – зачет с					
оценкой					
Вид промежуточной аттестации – экзамен	+	+			
Общая трудоемкость час	216	207			
экзам. ед.		9			

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1. Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Bce
п/п				зан.	зан.		го,
							час
1	Информационные технологии в проектировании приборов	Информационные технологии — новая отрасль знаний. Основные понятия и определения. Этапы развития ИТ. Основные элементы ИТ. Операции технологического процесса в информационных системах. Основные принципы и методология применения ИТ.	2		4	5	11
2	Состав и возможности современных САПР приборов.	Особенности проектирования с использованием методов и средств автоматизации проектных работ. Состав и возможности современных САПР функционального и конструкторского проектирования. Наиболее распространенные программные комплексы конструкторского, топологического и схемотехнического проектирования приборов и систем: пакеты OrCAD,	2	2	4	7	15

		Altima Design, P-CAD, Pro/ENGINEER, ком-					
	T.	плексы средств Mentor Graphics, Cadence.					
3	Типовые задачи проектирования приборов	Типовые задачи анализа, синтеза и оптимизации на этапах функционального и конструкторского проектирования приборов и систем. Современные подходы, методы и организация математического обеспечения для их решения	2		4	7	13
4	Типовые задачи функционального проектирования приборов	Особенности проектирования электронной части приборов. Классификация задач и методов функционального проектирования приборов и систем.	2	2	4	7	15
5	Математическое обеспечение для решения задач функционального проектирования приборов	Математические модели, методы и алгоритмы решения задач синтеза, анализа и оптимизации функциональных (функционально-логических) и принципиальных схем приборов и их комплексов.	2		4	7	13
6	Математическое обеспечение для решения задач функционального проектирования приборов	Математические модели, методы и алгоритмы решения задач синтеза, анализа и оптимизации функциональных (функционально-логических) и принципиальных схем приборов и их комплексов.	2	2	4	7	15
7	Математическое обеспечение для решения задач конструкторского проектирования приборов	Классификация задач, математических моделей и методов конструкторского проектирования приборов и систем.	2	2	4	7	15
8	Модели и методы топологического про- ектирования приборов	Математические модели, методы и алгоритмы решения задач топологического проектирования радиоэлектронных модулей (узлов на печатных платах) в составе приборов.	2		4	7	13
9	Модели и методы топологического про- ектирования приборов	Математические модели, методы и алгоритмы решения задач топологического проектирования радиоэлектронных модулей (узлов на печатных платах) в составе приборов.	2	2	4	7	15
10	Математические мо- дели приборов для задач конструкторско- го проектирования	Математические модели, используемые в конструкторских САПР, 3D-модели конструкций, методы их построения. САПР Pro/ENGINEER, ее структура и основные возможности.	2		4	7	13
11	Задачи анализа при проектировании приборов.	Основные задачи анализа и верификации конструкций приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характеристик приборов и систем	2	2	4	7	15
12	Модели и методы статистического моделирования приборов. Развитие современных САПР приборов	Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.	2		4	7	13
		Итого	24	12	48	105	189

заочная форма обучения

No	Наименование темы	Содержание раздела	Лекц	Прак	Лаб.	CPC	Всего,
Π/Π				зан.	зан.		час
1	Информационные технологии в проектировании приборов. Состав и возможности современных САПР приборов.	Особенности проектирования с использованием методов и средств автоматизации проектных работ. Состав и возможности современных САПР функционального и конструкторского проектирования. Наиболее распространенные программные комплексы конструкторского, топологического и схемотехнического проектирования приборов и систем: пакеты OrCAD, Altima Design, P-CAD, Pro/ENGINEER, комплексы средств Mentor Graphics, Cadence.	2			43	45
2	Типовые задачи проектирования приборов	Типовые задачи анализа, синтеза и оптимиза- ции на этапах функционального и конструктор- ского проектирования приборов и систем. Со- временные подходы, методы и организация	2	2	4	43	51

Особенности проектирования электронной части приборов. Классификация задач и методов и систем. Математическое обеспечение для решения задач синтеза, анализа и оптимизации функционально-погических) то проектирования приборов и принципиальных схем приборов и их комплексов. Математическое обеспечение для решения задач синтеза, анализа и оптимизации функционально-погических) и принципиальных схем приборов и их комплексов. Классификация задач, математических моделей и методы конструкторского проектирования приборов и систем. Математические модели, методы и апгоритмы решения задач топологического проектирования приборов. Математическое обеспечение для решения задач, математические модели, методы и апгоритмы решения задач топологического проектирования приборов. Математическое лечения задач топологического проектирования приборов и систем. Математические модели, методы и апгоритмы решения задач топологического проектирования. Задач конструкторских САПР, 3D-модели конструкций, методы их построения. САПР Рго/ENGINEER, ес структура и основные возможности. Основные возможности. Основные задачи анализа не рификации конструкций приборов и систем. Математические модели приборов и систем. Математические модели приборов и систем. Методы, модели и апторитмы роды в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характероры в комплексов. Оптимизация структуры, параметров и характеро роды в конструкциях приборов и систем. Методы, модели и апторитмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированиют приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и систем. Итого в методы и систем.			математического обеспечения для их решения.					
функционального проектирования приборов и систем. Математическое обеспечение для решения задач синтеза, анализа и оптимизации функционального проектирования приборов Математическое обеспечение для решения задач синтеза, анализа и оптимизации функциональных (функциональных схем приборов и их комплексов. Математическое обеспечение для решения задач конструкторского проектирования приборов и систем. Математические модели, иметоды топологического проектирования приборов. Математические модели и методы топологического проектирования приборов. Математические модели приборов. Математические модели приборов для задач конструкторского проектирования приборов. Математические модели проектирования приборов. Мадели и методы и люстроения. САПР Рго/ЕмбіньЕк, еструктура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математические модели приборов и систем. Математической прироров и систем. Математической прироцесов и полей различной физической прироцесов и систем. Методы, модели и тенденции развития и повышения задач учета статистического разброса параметров пу проектировании приборов и систем. Методы, модели и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем. Сегод в автоматизированного проектирования приборов и систем. Методы и средств автоматизированного проектирования приборов и систем. Сегод в автоматизированного проектирования приборов и систем. Методы и средств автоматизированного проектирования приборов и систем. Методы и средств автоматизированного проектирования приборов и систем. Методы и потроектиро								
Математическое обеспечение для решения задач синтеза, анализа и оптимизации функционального проектирования приборов математическое обеспечение для решения задач конструкторского проектирования приборов. Модели и методы топологического проектирования приборов. Математические модели, и методы и для решения задач конструкторского проектирования приборов. Модели и методы и для задач конструкторского проектирования приборов. Математические модели, и методы и для задач конструкторского проектирования приборов. Математические модели, используемые в констрои проектирования приборов. Модели и методы и для задач конструкторского проектирования приборов. Модели и методы и для задач конструкторского проектирования приборов и систем. Математические модели, используемые в констром конструкций, методы их построения. САПР Рго/ЕNGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математическое модели и приборов. Модели и методы и построения. САПР Рго/ЕNGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математическое модели и приборов и систем. Математическое модели и для задачи анализа и верификации конструкций приборов и систем. Математическое модели и апгоритмы решения задач учета статистического го разброса параметров при проектировании и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.								
Математическое обеспечение для решения задач функциональных (функционально-го проектирования приборов Математическое обеспечение для решения задач, конструкторского проектирования приборов модели и методы топологического проектирования приборов. Модели и методы топологического проектирования приборов. Модели и методы приборов и систем. Математические модели, приборов и систем. Математические модели, приборов и систем. Математические модели, приборов и систем. Математические модели приборов. Модели и методы приборов. Математические модели приборов. Математические модели приборов. Математические модели, используемые в конструкторского проектирования. Задачи анализа при проектирования при боров. Модели и методы статистического моделирования при боров. Модели и методы статистического моделирования при боров. Развитие современных САПР приборов и систем. Методы, кодели и методы статистического проектировании приборов и систем. Методы, кодели и методы статистического проектировании приборов и систем. Методы, кодели и методы статистического проектировании приборов и систем. Методы, кодели и методы статистического поделирования при проектировании приборов и систем. Методы, кодели и методы систем. Методы, кодели и методы статистического поделирования приборов и систем. Методы, кодели и алгоритмы решения задач учета статистического праборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.			функционального проектирования приборов и					
печение для решения задач синтеза, анализа и оптимизации функционального проектирования приборов плексов. Математическое обеспечение для решения задач, математических моделей и методов конструкторского проектирования приборов. Модели и методы топологического проектирования приборов. Модели и методы топологического проектирования приборов. Математические модели, иметоды топологического проектирования приборов. Математические модели, приборов. Математические модели, приборов. Математические модели, используемые в кондели приборов для задач конструкторского проектирования приборов. Модели и методы и потроения. САПР ЭТО-МОДЕЛИ, методы конструкций, методы и построения. САПР Рго/ENGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и комплексов. Тотимизация структуры, параметров и характеристих приборов и систем. Методы, модели и поноворов и систем. Методы, модели и поноворов и систем. Методы, модели и приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированног проектирования приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.								
3 задач функционально- го проектирования приборов Математическое обеспечение для решения задач конструкторского проектирования приборов и систем. Математические модели, и методы топологического проектирования приборов. Математические модели и методы топологического проектирования приборов. Математические модели и методы топологического проектирования приборов. Математические модели и методы и алгоритмы решения задач топологического проектирования приборов. Математические модели, используемые в конструктирокого проектирования приборов. Обров. Астистического проектирования припроектирования прип			*					
го проектирования приборов проектирования приборов и из комприексов. Математическое обеспечение для решения задач конструкторского проектирования приборов модели и методы топологического проектирования приборов. Модели и методы топологического проектирования приборов. Математические модели, иметоды топологического проектирования приборов. Математические модели, используемые в конструкторского проектирования. Задач конструкторского проектирования приборов. Математические модели, используемые в конструкторского проектирования. Задач анализа при проектирования приборов модели и методы их построения. САПР Рго/ENGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математическое модели процессов и полей различной физической природы статистического обременных САПР приборов. Оптимизация структуры, параметров и характеристик приборов и систем. Методы, модели и апторитмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.								
приборов Математическое обеспечение для решения задач конструкторского проектирования приборов. Модели и методы топологического проектирования приборов. Математические модели и методы топологического проектирования приборов. Математические модели и методы приборов и систем. Математические модели, методы и алгоритмы решения задач топологического проектирования приборов. Математические модели, используемые в конструкторского проектирования приборов. Математические модели, используемые в конструкторских САПР, 3D-модели конструкций, методы их построения. САПР Рго/ENGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характероды и характероды и характероды в конструкциях приборов и систем. Методы, модели и алгоритмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.	3			2		4	43	49
Математическое обеспечение для решения задач конструкторского проектирования приборов. Модели и методы и одровати и методы топологического проектирования приборов. Модели и методы топологического проектирования приборов. Математические модели и методы и характерго проектирования приборов. Математические модели, используемые в конструкторского проектирования приборов. САПР Рго/ЕNGINEER, ее структура и основные возможности. Основные задачи анализа при проектирования приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и характероды в конструкциях приборов и характероров. Оптимизация структуры, параметров и характеро го разброса параметров при проектировании приборов и систем. Методы, модели и апторитмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		го проектирования	и принципиальных схем приборов и их ком-					
печение для решения задач конструкторского проектирования приборов. Модели и методы топологического проектирования приборов. Модели и методы топологического проектирования приборов. Математические модели, используемые в кондели приборов для задач конструкторского проектирования. Задачи анализа при проектирования приборов. Модели и методы их построения. САПР Рго/ЕNGINEER, ее структура и основные возможности. Основные задачи анализа при проектирования приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характеросто разброса параметров и и систем. Методы, модели и алгоритмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		приборов	плексов.					
задач конструкторско- го проектирования приборов. Модели и методы топологического проектирования приборов. Математические модели приборов. Математические модели, приборов. Математические модели, приборов. Математические модели, используемые в кондели приборов для задач конструкторско- го проектирования задач конструкторско- го проектирования задач и анализа при проектировании приборов. Модели и методы и татистического роды в конструкциях приборов и систем. Математические модели конструкций, методы их построения. САПР Рго/ENGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характеро разброса параметров при проектировании приборов и систем. Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		Математическое обес-	Классификация задач, математических моделей					
4 го проектирования приборов. Модели и методы и алгоритмы решения задач топологического проектирования приборов. Математические модели приборов для задач конструкторского проектировании приборов. Математические модели, используемые в конструкторского проектирования приборов. Математические модели, используемые в конструктировании приборов для задач конструкторского проектировании приборов. Модели и методы их построения. САПР Рго/ЕNGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характероды в конструкциях приборов и систем. Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		печение для решения	и методов конструкторского проектирования					
приборов. Модели и методы топологического проектирования приборов. Математические модели приборов для задач конструкторского проектирования при проектирования при проектирования при боров. Модели и методы статистического моделирования при боров. Развитие современных САПР приборов. Топроворов для задачи анализа при проектирования при боров. Модели и методы статистического роды в конструкциях приборов и систем. Математические модели процессов и полей различной физической при проектирования при боров. Развитие современных САПР приборов и систем. Методы, модели и алгоритмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем. Топроектирования радиоэлектронных модолаектронных платах) в составе приборов. Топроектирования радиоэлектронных платах) в составе приборов и конструкций, модели и конструкций, методы и проектировании продоров и систем. Математической припроектировании продоров и систем. Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		задач конструкторско-	приборов и систем. Математические модели,					
приборов. Модели и методы топологического проектирования приборов. Математические модели приборов для задач конструкторского проектирования при проектирования при проектирования при боров. Модели и методы статистического временных САПР приборов. Модели приборов и систем. Математические модели конструкций при проектирования при боров. Модели и методы статистического моделирования при боров. Развитие современных САПР приборов и систем. Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании при приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизирования приборов и систем.	4	го проектирования	методы и алгоритмы решения задач топологи-	2	2	4	12	51
приборов. Математические модели, используемые в конструкторских САПР, 3D-модели конструкций, методы их построения. САПР Рго/ENGINEER, еструктура и основные возможности. Основные задачи анализа при проектировании приборов и систем. Математические модели приборов и систем. Математические модели профоров. Модели и методы статистического моделирования приборов и систем. Математические модели профоров и систем. Математические модели профоров и систем. Математические модели профоров и систем. Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.	4	приборов. Модели и	ческого проектирования радиоэлектронных			4	43	31
приборов. Математические модели, используемые в кондели приборов для задач конструкторского проектирования. Задачи анализа при проектировании приборов и систем. Математические модели проектировании приборов и систем. Математические модели профоров. Модели и методы статистического моделирования приборов. Развитие современных САПР приборов. Тимент приборов и систем образличной физической природы в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характеристик приборов и систем. Методы, модели и алгоритмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		методы топологиче-	модулей (узлов на печатных платах) в составе					
Математические модели приборов для задач конструкторского проектирования. Задачи анализа при проектировании приборов и систем. Математические модели конструкций, методы их построения. САПР Рго/ЕNGINEER, ее структура и основные возможности. Основные задачи анализа и верификации конструкций приборов и систем. Математические модели процессов и полей различной физической природы статистического моделирования приборов. Развитие современных САПР приборов. Торов в конструкциях приборов и комплексов. Оптимизация структуры, параметров и комплексов. Оптимизация структуры параметров и комплексов. Оптимизация структуры, параметров и комплексов. Оптимизация структуры параметров и комплексов. Оптимизация структуры параметров и комплексов. Оптимизация структуры, параметров и комплексов. Оптимизация структуры и комплек		ского проектирования	приборов.					
дели приборов для задач конструкторско- го проектирования. Задачи анализа при проектировании приборов. Модели и методы статистического боров. Развитие современных САПР приборов. 5 моделирования приборов. САПР приборов. Сапритива решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизирования приборов и систем.		приборов.						
задач конструкторского проектирования. Задачи анализа при проектировании приборов и систем. Математические модели процессов и полей различной физической природы в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характеристик приборов. Развитие современных САПР приборов. Сапраброса параметров при проектировании приборов и систем. Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		Математические мо-	Математические модели, используемые в кон-					
го проектирования. Задачи анализа при проектировании приборов. Модели и методы статистического моделирования приборов. Развитие современных САПР приборов. Ториборов. Развитие современных саприборов и систем. Методы, модели и алгоритмы решения задач учета статистического го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		дели приборов для	структорских САПР, 3D-модели конструкций,					
Задачи анализа при проектировании приборов. Модели и методы статистического моделирования приборов. Развитие современных САПР приборов. 5 моделирования приборов. САПР приборов. САПР приборов. САПР приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизирования приборов и систем. Основные приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		задач конструкторско-	методы их построения. CAПР Pro/ENGINEER,					
проектировании приборов и систем. Математические модели процессов и полей различной физической природы статистического моделирования приборов. Развитие современных САПР приборов. САПР приборов. Сапраброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		го проектирования.	ее структура и основные возможности. Основ-					
боров. Модели и методы статистического моделирования приборов. Развитие современных САПР приборов. 5 моделирования приборов. САПР приборов. САПР приборов. САПР приборов. САПР приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизирования приборов и систем. Основные приборов и систем. Сеновные направления и тенденции развития и повышения эффективности современных методов и средств автоматизирования приборов и систем.		Задачи анализа при	ные задачи анализа и верификации конструкций					
боров. Модели и методы статистического моделирования приборов. Развитие современных САПР приборов. 5 моделирования приборов. САПР приборов. САПР приборов. САПР приборов. САПР приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизирования приборов и систем. Основные приборов и систем. Сеновные направления и тенденции развития и повышения эффективности современных методов и средств автоматизирования приборов и систем.		проектировании при-	приборов и систем. Математические модели					
тоды статистического моделирования при- боров. Развитие современных САПР приборов. Тоды статистического моделирования при- боров. Развитие современных САПР приборов. Тоды в конструкциях приборов и комплексов. Оптимизация структуры, параметров и характеристик приборов и систем. Методы, модели и алгоритмы решения задач учета статистического разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.		боров. Модели и ме-						
5 моделирования при- боров. Развитие со- временных САПР приборов. САПР приборов и систем. Методы, модели и алгоритмы решения задач учета статистическо- го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективно- сти современных методов и средств автомати- зированного проектирования приборов и сис- тем.		тоды статистического	роды в конструкциях приборов и комплексов.					
боров. Развитие современных САПР приборов. САПР приборов. САПР приборов. САПР приборов. САПР приборов и систем. Основные направления и приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.	5	моделирования при-	Оптимизация структуры, параметров и характе-	2		2	43	47
временных САПР алгоритмы решения задач учета статистическо- го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективно- сти современных методов и средств автомати- зированного проектирования приборов и сис- тем.		боров. Развитие со-						
приборов. го разброса параметров при проектировании приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.								
приборов и систем. Основные направления и тенденции развития и повышения эффективности современных методов и средств автоматизированного проектирования приборов и систем.								
тенденции развития и повышения эффективно- сти современных методов и средств автомати- зированного проектирования приборов и сис- тем.		r						
сти современных методов и средств автомати- зированного проектирования приборов и сис- тем.								
зированного проектирования приборов и сис- тем.								
тем.								
111010 0 7 10 1/7 20/			Итого	8	4	16	179	207

5.2 Перечень лабораторных работ

- 1. Автоматизированная компоновка и размещение элементов при проектировании топологии печатной платы.
- 2. Моделирование и анализ времени задержки сигнала в проводниках на печатных платах.
- 3. Моделирование и анализ нестационарных тепловых процессов в элементах и узлах приборов.
- 4. Моделирование типовых (электрических, тепловых, механических) характеристик конструкций приборов с использованием современных программных средств.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсового проекта в 8 и 10 семестрах.

Примерная тематика курсового проекта: «Изучение и применение методов, математического обеспечения и средств автоматизированного проектирования приборов».

Содержанием курсового проекта является изучение возможностей современных методов и средств автоматизированного проектирования прибо-

ров, выбор наиболее эффективных в конкретных условиях и применение для решения типовых проектных задач.

Задачи, решаемые при выполнении курсового проекта:

- •провести поиск и анализ информации о имеющихся методах и средствах, их возможностях и обосновать выбор наиболее целесообразных из них в рамках заданной тематики;
- разработать методику их применения для решения конкретных поставленных задач;
- •провести практическое применение на примере типовых конструкций приборов на уровне узлов и устройств.

Курсовой проект включат в себя расчетно-пояснительную записку с приложение необходимого графического материала.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компетенция	Результаты обучения,, характеризую- щие	Критерии	Аттестован	Не аттестован
	сформированность компетенции	оценивания		
ПК-2	Знать основные понятия процесса	Активная работа на	Выполнение	Невыполнение
	проектирования, структуру и клас-	лабораторных и	работ в срок,	работ в срок, пре-
	сификацию САПР, виды обеспече-	практических заня-	предусмотрен-	дусмотренный в
	ния САПР, место САПР в интегри-	тиях, отвечает на	ный в рабочих	рабочих програм-
	рованных системах, взаимосвязь	теоретические во-	программах	мах
	САПР с другими системами и сис-	просы при защите		
	тем технологического проектиро-	курсового проекта		
	вания			
	Уметь использовать методики	Решение стандарт-	Выполнение	Невыполнение
	проектирования при разработке	ных практических	работ в срок,	работ в срок,
	узлов и деталей различных конст-	задач, написание	предусмот-	предусмотрен-
	рукций	курсового проекта	ренный в ра-	ный в рабочих
			бочих про-	программах
			граммах	
	владеть навыками применения	Решение приклад-	Выполнение	Невыполнение
	современных средств и комплек-	ных задач в кон-	работ в срок,	работ в срок,
	сов автоматизированного проек-	кретной предметной	предусмот-	предусмотрен-
	тирования для решения задач	области, выполне-	ренный в ра-	ный в рабочих
	разработки и моделирования	ние плана работ по	бочих про-	программах
	различных характеристик прибо-	разработке курсово-	граммах	
	ров и навыками подготовки	го проекта		
	принципиальных и монтажных			
	электрических схем, чертежей по			
	результатам автоматизированного			
	синтеза и анализа			

ПК-3	Знать технологии объектно-		
	ориентированного анализа и про-		
	ектирования, методики проекти-		
	рования и информационной под-		
	держки этапов проектирования		
	Уметь разрабатывать комплект		
	технической документации про-		
	екта, использовать анализ вариан-		
	тов и выбирать компромиссные		
	варианты, разрабатывать проект-		
	ную и техническую документа-		
	цию для различных конструкций		
	Владеть навыками использования		
	существующих пакетов и при-		
	кладных программ при выполне-		
	нии различных работ, способно-		
	стью формировать законченное		
	представление о принятых реше-		
	ниях и полученных результатах		

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 8 и 10 семестрах для очной и заочной форм обучения по системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно»

Компетенция	Результаты обучения, характеризующие сформированность ком-	Критерии оценивания	Отлично	Хорошо	Удовл	Неудовл
	петенции	оценивания				
ПК-2	Знать основные понятия процес- са проектирования, структуру и классификацию САПР, виды обеспечения САПР, место САПР в интегрированных системах, взаимосвязь САПР с другими системами и систем технологи- ческого проектирования	Тест	Выполне- ние теста на 90-100%	Выполнение теста на 80-90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	Уметь использовать методики проектирования при разработке узлов и деталей различных конструкций	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выпол- нение теста на 70-80%	В тесте менее 70% правильных ответов
	владеть навыками применения современных средств и комплексов автоматизированного проектирования для решения задач разработки и моделирования различных характеристик приборов и навыками подготов-ки принципи-альных и мон-тажных электрических схем, чертежей по результатам автоматизиро-ванного синте-за и анализа	Тест	Выполнение теста на 90-100%	Выполнение теста на 80-90%	Выпол- нение теста на 70-80%	В тесте менее 70% правильных ответов

ПК-3	Знать технологии объектно-			
	ориентированного анализа и			
	проектирования, методики про-			
	ектирования и информацион-			
	ной поддержки этапов проекти-			
	рования			
	Уметь разрабатывать комплект			
	технической документации			
	проекта, использовать анализ			
	вариантов и выбирать компро-			
	миссные варианты, разрабаты-			
	вать проектную и техническую			
	документацию для различных			
	конструкций			
	владеть навыками использова-			
	ния существующих пакетов и			
	прикладных программ при вы-			
	полнении различных работ,			
	способностью формировать			
	законченное представление о			
	принятых решениях и получен-			
	ных результатах			

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Современные САПР:
- используют традиционное проектирование;
- используют автоматизированное проектирование;
- используют автоматическое проектирование.
- 2. Основой интегрированных САПР приборов служат комплексы проектирования:
- -конструкторского;
- -функционального;
- -технологического.
- 3. Наиболее эффективны ИТ при выполнении проектных процедур:
- анализа проектных решений;
- получения проектных решений;
- оптимизации проектных решений.
- 4. Для проектирования приборов широкого применения предназначены САПР.
- комплексные;
- универсальные;
- специализированные.
- <u>5. Для топологического проектирования приборов предназначены комплексы проектирования:</u>
 - конструкторского;
 - функционального;
 - технологического..

6 Основой построения САПР являются средства;

- технические;
- программные;
- информационные.
- 7. Определяющей характеристикой математической модели является:
- точность;
- экономичность;
- адекватность.
- 8. Базой для получения оптимальных проектных решений является:
- критерии;
- ограничения;
- модели.
- 9. В соответствии с принципами системного подхода к проектированию приборов представляются в виде:
 - -совокупности более простых элементов;
 - -как часть более сложной системы;
 - одновременно используются оба указанных представления.
 - 10. Основные характеристики приборов в целом это:
 - выходные характеристики;
 - входные характеристики;
 - внутренние параметры.
 - 11. При моделировании ЭМС используютсяпараметры:
 - элементов;
 - паразитные;
 - выходные.
 - 12. Процесс проектирования современных приборов имеет характер:
 - итерационный;
 - равномерный;
 - линейный.
- 13. Математическая модель, которая не учитывает случайных факторов функционирования, называется:
 - детерминированной;
 - вероятностной;
 - дискретной.
- <u>14. Математическая модель, заданная в виде последовательности шагов вычислений, называется:</u>
 - алгоритмической;
 - аналитической;
 - детерминированной.
- <u>15. Полученный при N-кратном статистическом моделировании ряд значений параметров $x_1, ..., x_N$ называется совокупностью:</u>
 - выборочной;
 - генеральной;
 - случайной.

- <u>16. Связь между возможными значениями случайной величины и вероятностями появления каждого значения случайной величины устанавливается:</u>
 - функцией распределения;
 - математическим ожиданием;
 - дисперсией.
- <u>17.</u> Положение среднего значения случайной величины, возле которого группируются экспериментально полученные значения, характеризуется:
 - математическим ожиданием;
 - дисперсией;
 - функцией распределения.
- <u>18. Практическая невозможность наступления в любой момент времени более од</u>ного события называется:
 - ординарностью;
 - стационарностью;
 - отсутствием последействия.
- 19. Основной процедурой при топологическом проектировании узлов приборов является:
 - компоновка;
 - размещение;
 - трассировка;
 - моделирование.
- 20. Для учета разброса параметров элементов при проектировании используется моделирование:
 - одновариантное;
 - статистическое;
 - многовариантное.
- <u>21. Если некоторый параметр зависит от достаточно большого числа случайных величин, подчиненных любым законам распределения, то он приближенно подчиняется закону</u>... распределения.
 - нормальному;
 - равномерному;
 - случайному.
- 22. В задачах оптимизации характеристик приборов выходные параметры, не выбранные в качестве критериев:
 - учитываются в виде ограничений;
 - не учитываются;
 - учитываются в произвольной форме.
- 23. В методе статистического моделирования основой генерирования вариантов значений являются случайные числа с:
 - равномерным законом распределения на интервале (0, 1);
 - нормальным законом распределения на интервале (0, 1);
 - равномерным законом распределения на интервале (-1, 1)

- 24. Целью решения проектной задачи параметрической оптимизации является определение набора значений варьируемых параметров, при котором критерии:
 - достигают своих наилучших значений;
 - становятся несущественными;
 - перестают определяться.
 - 25. При многокритериальной оптимизации методом свертки критериев:
 - выбирает один, наиболее важный критерий качества;
- ставится в соответствие весовой коэффициент, характеризующий важность данного критерия с точки зрения проектировщика;
- минимизируется максимальное отклонение частного критерия качества от его наилучшего значения.
 - 26. Задачи анализа полей относятся к математическим моделям:
 - микроуровня;
 - макроуровня;
 - мегауровня.
 - 27. Основная идея численного метода конечных разностей заключается в переходе от:
- решения дифференциальной краевой задачи к решению системы линейных алгебраических уравнений;
- решения линейных алгебраических уравнений к решению дифференциальной краевой задачи;
- решения дифференциальной линейной задачи к решению дифференциальных алгебраических уравнений.
 - 28. При решении задачи компоновки в общем случае учитывают:
 - электромагнитную совместимость элементов;
 - тепловую совместимость элементов;
 - оба перечисленных фактора.
 - 29. Основной недостаток последовательного алгоритма компоновки:
 - неспособность находить глобальный минимум количества внешних связей;
 - сложность выполняемых операций;
 - значительные временные затраты.
 - 30. При моделировании стационарных процессов используются уравнения:
 - эллиптические;
 - параболические;
 - гиперболические.
 - 31. Точное математическое рещение задач моделирования обеспечивает:
 - метод конечных разностей:
 - метод конечных элементов;
 - аналитический метод.
- 32. Учет конструктивных и эксплуатационных свойств элементной базы производится при:
 - компоновке;
 - размещении;
 - трассировке.
 - 33. Моделью схемы при топологическом проектировании является:

- граф:
- система дифференциальных уравнений;
- система алгебраических уравнений.

34. Наиболее простая мктематическая модель имеет форму:

- линейного уравнения;
- трансциндентного уравнения;
- дифференциального уравнения.

35. Внешние воздействия на объект проектирования при моделировании описывают:

- начальные условия:
- граничные условия;
- дифференциальное уравнение.

7.2.2 Примерный перечень заданий для решения стандартных задач

Вариант 1

- 1 Современные приборов как объект проектирования.
- 2 Возможности современных программных комплексов автоматизированного проектирования приборов.
- 3 Какова последовательность применения средств и комплексов автоматизированного проектирования приборов в соответствии с их функциональным назначением? Вариант 2
- 1 Какие комплексы проектирования служат основой для построения современных интегрированных САПР приборов?
- 2 Классификация проектных процедур.
- 3 Структура, назначение и основные возможности комплексов функционального проектирования (OrCAD, Altima Design и т.д.).

Вариант 3

- 1 Какие основные положения системного подхода используются в процессе проектирования приборов?
- 2 Особенности проектирования приборов с использованием средств и возможностей ИТ.
- 3 Структура, назначение и основные возможности комплексов конструкторскотопологического проектирования (OrCAD, Altima Design, P -CAD и т.д.).

Вариант 4

- 1 Что включает в себя понятие «Информационные технологии» применительно к процессу проектирования приборов?
- 2 Основные функциональные возможности типовых программных комплексов проектирования приборов.
- 3 Сетевые технологии и экспертные системы в САПР приборов.

Вариант 5

- 1 Основные этапы развития ИТ, применяемых в сфере проектирования технических объектов.
- 2 Типовые задачи анализа, синтеза и оптимизации на различных этапах проектирования приборов, решаемые с помощью средств САПР.
- 3 Структура, назначение и основные возможности универсальных комплексов конструкторского проектирования (Pro/ENGINEER и т.д.). Вариант 6

- 1 Какие элементы (комплексы, обеспечение) являются базой современных ИТ?
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе функционального проектирования приборов.
- 3 Возможности современных программных комплексов проектирования по оптимизации проектных решений.

Вариант 7

- 1 Структура и состав современных САПР приборов.
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе конструкторского проектирования приборов.
- 3 Основные типы функциональных характеристик приборов, которые моделируются с при помощи современных программных комплексов.

Вариант 8

- 1 Наиболее распространенные программные комплексы конструкторского, топологического и схемотехнического проектирования приборов.
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе топологического проектирования конструкций приборов.
- 3 Основные типы характеристик конструкций приборов, которые моделируются при помощи современных программных комплексов.

Вариант 9

- 1 Основные операции технологического процесса в САПР как информационных системах.
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе технологического проектирования приборов.
- 3 Комплексы САПР Mentor Graphics, Cadence.

Вариант 10

- 1 Основные принципы применения ИТ и средств САПР.
- 2 Применение средств 3D-моделирования конструкций приборов.
- 3 Возможности и назначение универсальных программных комплексов моделирования (ANSYS, SolidWorksu т.д.) при проектировании приборов.

7.2.3 Примерный перечень заданий для решения прикладных задач

Вариант 1

- 1 Современные приборов как объект проектирования.
- 2 Возможности современных программных комплексов автоматизированного проектирования приборов.
- 3 Какова последовательность применения средств и комплексов автоматизированного проектирования приборов в соответствии с их функциональным назначением? Вариант 2
- 1 Какие комплексы проектирования служат основой для построения современных интегрированных САПР приборов?
- 2 Классификация проектных процедур.
- 3 Структура, назначение и основные возможности комплексов функционального проектирования (OrCAD, Altima Design и т.д.).

Вариант 3

- 1 Какие основные положения системного подхода используются в процессе проектирования приборов?
- 2 Особенности проектирования приборов с использованием средств и возможностей ИТ.

3 — Структура, назначение и основные возможности комплексов конструкторскотопологического проектирования (OrCAD, Altima Design, P -CAD и т.д.).

Вариант 4

- 1 Что включает в себя понятие «Информационные технологии» применительно к процессу проектирования приборов?
- 2 Основные функциональные возможности типовых программных комплексов проектирования приборов.
- 3 Сетевые технологии и экспертные системы в САПР приборов.

Вариант 5

- 1 Основные этапы развития ИТ, применяемых в сфере проектирования технических объектов.
- 2 Типовые задачи анализа, синтеза и оптимизации на различных этапах проектирования приборов, решаемые с помощью средств САПР.
- 3 Структура, назначение и основные возможности универсальных комплексов конструкторского проектирования (Pro/ENGINEER и т.д.).

Вариант 6

- 1 Какие элементы (комплексы, обеспечение) являются базой современных ИТ?
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе функционального проектирования приборов.
- 3 Возможности современных программных комплексов проектирования по оптимизации проектных решений.

Вариант 7

- 1 Структура и состав современных САПР приборов.
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе конструкторского проектирования приборов.
- 3 Основные типы функциональных характеристик приборов, которые моделируются с при помощи современных программных комплексов.

Вариант 8

- 1 Наиболее распространенные программные комплексы конструкторского, топологического и схемотехнического проектирования приборов.
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе топологического проектирования конструкций приборов.
- 3 Основные типы характеристик конструкций приборов, которые моделируются при помощи современных программных комплексов.

Вариант 9

- 1 Основные операции технологического процесса в САПР как информационных системах.
- 2 Основные задачи и автоматизированные процедуры, выполняемые на этапе технологического проектирования приборов.
- 3 Комплексы САПР Mentor Graphics, Cadence.

Вариант 10

- 1 Основные принципы применения ИТ и средств САПР.
- 2 Применение средств 3D-моделирования конструкций приборов.
- 3 Возможности и назначение универсальных программных комплексов моделирования (ANSYS, SolidWorksu т.д.) при проектировании приборов.

7.2.4 Примерный перечень вопросов для подготовки к экзамену

1. Структура процесса проектирования приборов.

- 2. Классификация проектных процедур.
- 3. Структура и состав САПР приборов.
- 4. Математические модели приборов. Классификация моделей.
- 5. Основные этапы и задачи топологического проектирования приборов.
- 6. Основные критерии и ограничения задач топологического проектирования приборов.
- 7. Математические модели схем и монтажно-коммутационного пространства приборов.
- 8. Компоновка, основные задачи и критерии.
- 9. Задача разбиения. Последовательный алгоритм.
- 10. Задачи учета влияния статистического разброса параметров при проектировании приборов.
- 11. Метод коэффициентов чувствительности для учета влияния статистического разброса параметров при проектировании приборов.
- 12. Допусковый синтез с помощью коэффициентов чувствительности.
- 13. Статистический метод учета влияния статистического разброса параметров при проектировании приборов. Допусковый анализ.
- 14. Метод Монте-Карло при решении задачи учета влияния статистического разброса параметров при проектировании приборов. Допусковый синтез.
- 15. Оптимизация. Классификация задач оптимизации при проектировании приборов.
- 16. Задачи линейного программирования при проектировании приборов.
- 17. Задачи нелинейного программирования при проектировании приборов. Целевые функции. Многокритериальные задачи.
- 18. Итерационный алгоритм разбиения.
- 19. Задача и алгоритм покрытия.
- 20. Задача размещения. Основные критерии, ограничения и алгоритмы.
- 21. Последовательный алгоритм размещения.
- 22. Итерационный алгоритм размещения.
- 23. Алгоритм размещения, основанный на решении задачи о назначениях.
- 24. Трассировка. Основные этапы и критерии.
- 25. Метод определения необходимого числа слоев печатной платы.
- 26. Алгоритмы построения кратчайших деревьев.
- 27. Волновой алгоритм трассировки.
- 28. Задачи анализа электромагнитной совместимости и помехоустойчивости приборов. Паразитные параметры.
- 29. Моделирование задержки сигналов в проводниках.
- 30. Эквивалентные схемы проводников и уравнения для моделирования электромагнитных процессов.
- 31. Моделирование температурных полей. Модель конструкции приборов. Уравнения и краевые условия.
- 32. Статические и динамические модели одномерных тепловых процессов в приборах.
- 33. Математические модели для анализа полей в приборах. Классификация уравнений.

7.2.6 Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 3 вопроса, 3 стандартные задачи и 3 прикладные задачи. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов -9.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 7 баллов.
- 3. Оценка «Хорошо» ставится в случае, если студент набрал 8 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал 9 баллов.

7.2.7 Паспорт оценочных материалов

№	Контролируемые разделы	Код контролируемой	Наименование	
Π/Π	(темы) дисциплины	компетенции (или ее	оценочного	
		части)	средства	
1	Информационные техноло-	ПК-2, ПК-3	Тест, зачет, уст-	
	гии в проектировании при-		ный опрос	
	боров			
2	Состав и возможности со-	ПК-2, ПК-3	Тест, зачет, уст-	
	временных САПР прибо-		ный опрос, КП	
	ров			
3	Типовые задачи проекти-	ПК-2, ПК-3	Тест, зачет, уст-	
	рования приборов		ный опрос, КП	
4	Типовые задачи функцио-	ПК-2, ПК-3	Тест, зачет, уст-	
	нального проектирования		ный опрос, КП	
	приборов			
5	Математическое обеспече-	ПК-2, ПК-3	Тест, зачет, уст-	
	ние для решения задач		ный опрос	
	функционального проекти-			
	рования приборов			
6	Математическое обеспече-	ПК-2, ПК-3	Тест, экзамен,	
	ние для решения задач		устный опрос,	
	конструкторского проекти-		КП	
	рования приборов			
7	Модели и методы тополо-	ПК-2, ПК-3	Тест, экзамен,	
	гического проектирования		устный опрос,	
	приборов		КП	
8	Математические модели	ПК-2, ПК-3	Тест, экзамен,	
	приборов для задач конст-		устный опрос,	
	рукторского проектирова-		КП	
	ния			

9	Задачи анализа при проек-	ПК-2, ПК-3	Тест,	экзамен,
	тировании приборов.		устный	опрос,
			КП	
10	Модели и методы стати-	ПК-2, ПК-3	Тест,	экзамен,
	стического моделирования		устный	опрос,
	приборов. Развитие совре-		КП	
	менных САПР приборов			

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Защита курсового проекта осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Автоматизация проектирования приборов: Учеб. пособ. для вузов / О.В, Алексеев, А.А. Головков, И.Ю. Пивоваров и др.; Под. ред О.В.Алексеева. М: Высшая школа, 2000. 479 с.
- 2. Норенков И.П., Маничев В.Б. Основы теории и проектирования САПР: Учебник для вузов. М.: Высшая школа, 1990. 335 с.
- 3. Норенков И.П. Основы автоматизированного проектирования: Учеб. для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 360 с.
- 4. Советов Б.Я. Информационные технологии : Учеб. пособ. М. : Высш. шк., 2008.

- 5. Иванова Н.Ю., Романова Е.Б. Инструментальные средства конструкторского проектирования электронных средств Санкт-Петербург: НИУ ИТМО, 2013. 121 с.
- 6. Кологривов В. А. Основы автоматизированного проектирования радиоэлектронных устройств (часть 1): Учебное пособие / Томск : ТУСУР 2012. 120 с. URL: http://e.lanbook.com/books/element.php?pl1 id=4930
- 7. Кологривов В. А. Основы автоматизированного проектирования радиоэлектронных устройств (часть 2): Учебное пособие / Томск : ТУСУР 2012. 132 с. URL: http://e.lanbook.com/books/element.php?pl1_id=4929
- 8. Муромцев Д.Ю., Тюрин И.В. Математическое обеспечение САПР. СПб.: Лань, 2014. URL: http://e.lanbook.com/books/element.php?pl1 id=42192
- 9. Муратов А.В., Сотникова К.Н. Информационные технологии проектирования приборов: Учеб. пособ. Воронеж: ВГТУ, 2008. 242 с.
- 10. Самойленко Н.Э., Макаров О.Ю. Методы нелинейного программирования в задачах проектировании приборов. Воронеж: ВГТУ, 2006. 93 с.
- 11. Алгоритм парных перестановок в задачах автоматизированного топологического проектирования приборов: Учеб. пособ. / Муратов А.В., Макаров О.Ю., Скоробогатов В.С., Скоробогатов М.В. Воронеж: ВГТУ, 2009. 124 с.
- 12. Гольдин В.И. Информационная поддержка жизненного цикла электронных средств/ В.В. Гольдин и др. М.: Радио и связь, 2002. 379 с.
- 13. Турецкий А.В., Бородин В.В., Сизов С.Ю.. Моделирование тепловых и механических характеристик радиоэлектронных устройств в системе Pro/Engineer: Методические указания к лабораторным работам. Воронеж: ВГТУ, 2012.
- 14. Макаров О.Ю. Моделирование тепловых характеристик интегральных схем в импульсном режиме работы: Методические указания к лабораторной работе. Воронеж: ВГТУ, 2014.
- 15. Лопин А.В., Муратов А.В., Бобылкин И.С., Макаров О.Ю. Метод математического моделирования тепловых образов радиоэлектронных элементов на печатной плате: Методические указания к лабораторной работе. Воронеж: ВГТУ, 2013.
- 16. Макаров О.Ю., Турецкий А.В. Моделирование времени задержки сигнала в соединительных проводниках с диэлектрической изоляцией: Методические указания к лабораторной. Воронеж: ВГТУ, 2010.
 - 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем

ПО: Windows, Open Office, Internet Explorer, Altium designer, Компас 3D LT. Профессиональные базы данных: e-library.ru, Mathnet.ru,

Информационные справочные системы: dist.sernam.ru, Wikipedia http://eios.vorstu.ru.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения лекционных занятий необходима аудитория, оснащенная видеопроектором с экраном и пособиями по профилю.

Компьютерный класс, оснащенный ПЭВМ с установленным программным обеспечением: ауд. 234/3, 226/3, 230б/3.

Видеопроектор с экраном в ауд. 234/3.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Основы автоматизированного проектирования приборов» читаются лекции, проводятся лабораторные и практические занятия, выполняется курсовой проект.

Лекции представляет собой систематическое, последовательное изложение учебного материала. Это – одна из важнейших форм учебного процесса и один из основных методов преподавания в вузе. На лекциях от студента требуется не просто внимание, но и самостоятельное оформление конспекта. Качественный конспект должен легко восприниматься зрительно, в эго тексте следует соблюдать абзацы, выделять заголовки, пронумеровать формулы, подчеркнуть термины. В качестве ценного совета рекомендуется записывать не каждое слово лектора (иначе можно потерять мысль и начать писать автоматически, не вникая в смысл), а постараться понять основную мысль лектора, а затем записать, используя понятные сокращения.

- Практические занятия позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности практических занятий для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
- Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:
- работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций;
 - выполнение домашних заданий и типовых расчетов;
 - работа над темами для самостоятельного изучения;
 - участие в работе студенческих научных конференций, олимпиад;
 - подготовка к зачетам и экзаменам.

Кроме базовых учебников рекомендуется самостоятельно использовать имеющиеся в библиотеке учебно-методические пособия. Независимо от вида учебника, работа с ним должна происходить в течение всего семестра. Эффективнее работать с учебником не после, а перед лекцией.

При ознакомлении с каким-либо разделом рекомендуется прочитать его целиком, стараясь уловить общую логику изложения темы. При повторном чтении хорошо акцентировать внимание на ключевых вопросах и основных теоремах (формулах). Можно составить их краткий конспект.

Степень усвоения материала проверяется следующими видами контроля:

- текущий (опрос, контрольные работы, типовые расчеты);
- рубежный (коллоквиум);
- промежуточный (курсовая работа, зачет, зачет с оценкой, экзамен).

Коллоквиум – форма итоговой проверки знаний студентов по определенным темам.

Зачет — форма проверки знаний и навыков, полученных на лекционных и практических занятиях. Сдача всех зачетов, предусмотренных учебным планом на данный семестр, является обязательным условием для допуска к экзаменационной сессии.

Экзамен – форма итоговой проверки знаний студентов.

Для успешной сдачи экзамена необходимо выполнить следующие рекомендации —готовиться к экзамену следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяцполтора до экзамена. Данные перед экзаменом три-четыре дня эффективнее всего использовать для повторения.

Вид учебных	Деятельность студента	
занятий		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.	
Практические		
занятия	лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.	
Подготовка к	При подготовке к зачету и экзамену необходимо ориентироваться на	
дифференциро-	конспекты лекций, рекомендуемую литературу и решение задач на	
ванному зачету и	практических занятиях.	
экзамену		

КИДАТОННА

к рабочей программе дисциплины

«Основы автоматизированного проектирования приборов и систем»

Направление подготовки (специальность) 12.03.01 — Приборостроение Профиль (специализация) Приборостроение Квалификация выпускника Бакалавр Нормативный период обучения 4 года / 4 года 11 месяцев Форма обучения Очная / Заочная Год начала подготовки 2020 г.

Цель изучения дисциплины: овладеть теоретическими знаниями, практическими навыками и умениями решения задач проектирования электронной и механической частей приборов и специализированных технических систем с помощью методов и средств автоматизации проектных работ, использующих современные информационные технологии, методы математического моделирования и оптимизации.

Задачи изучения дисциплины:

Изучение возможностей и особенностей применения и развития современных САПР, методов, математического обеспечения и процедур синтеза, анализа, оптимизации конструкций и технологических процессов производства, верификации и принятия проектных решений. Приобретение знаний о принципах построения и особенности современных САПР, методах, средствах и процедурах синтеза, анализа, оптимизации схем и конструкций приборов и систем, верификации и принятия проектных решений; о современных программных комплексах проектирования приборов и их систем, технических средствах, применяемых в САПР, основных направлениях развития и совершенствования САПР; основных типах математических моделей, используемых для различных аспектов и уровней приборов и систем, математических постановках и методах автоматизированного решения задач функционального и конструкторского синтеза, анализа процессов различной физической природы в приборах и оптимизации конструкций приборов и их систем; методах и алгоритмах, применяемых для решения типовых задач синтеза и анализа, решаемых в ходе функционального и конструкторского проектирования приборов и систем. Освоение умений осуществлять математическую постановку типовых задач и выбирать эффективные методы и средства автоматизированного синтеза и анализа схем и конструкций приборов и систем; выполнять проектные процедуры с использованием современных программных комплексов автоматизированного проектирования; оценивать и выбирать наиболее эффективное математическое и программное обеспечение для автоматизации проектных работ. Приобретение навыков выбора и формирования математических моделей объекта проектирования, методов и средств решения задач конструктивного синтеза, комплексного анализа и оптимизации различных характеристик приборов и систем.

Перечень формируемых компетенций:

ПК-2 – готовность проектировать и конструировать типовые детали и узлы с использованием стандартных средств компьютерного проектирования

ПК-3 – готовность составлять отдельные виды технической документации, включая технические условия, описания, инструкции и другие документы

Общая трудоемкость дисциплины ЗЕТ: 6 з.е.

Форма итогового контроля по дисциплине: <u>экзамен</u> (зачет, зачет с оценкой, экзамен)