МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

утверждаю

Декан факультета ФИТКБ

Лусев П.Ю./

28.02.2023 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Теория информации»

Специальность 10.05.03 Информационная безопасность автоматизированных систем

Специализация специализация N 7 "Анализ безопасности информационных систем"

Квалификация выпускника специалист по защите информации

Нормативный период обучения <u>5 лет и 6 м.</u>

Форма обучения очная

Год начала подготовки 2023

Автор программы Заведующий кафедрой Систем информационной

безопасности

Руководитель ОПОП

О.В. Поздышева

А.Г. Остапенко

А.Г. Остапенко

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины - изучение основных понятий теории информации и ее приложений к практике кодирования и декодирования сообщений, формирование навыков ценностно-информационного подхода к анализу и синтезу эффективности систем связи.

1.2. Задачи освоения дисциплины

- научить принципам информационного подхода к анализу и синтезу систем связи и передачи информации;
- изучение основных информационных характеристик сигналов, методов организации защиты систем связи от непреднамеренных помех;
- изучение методологии анализа и оценки эффективности использования систем связи и передачи информации с учетом помехозащищенности, объема и скорости передачи информации, выбора метода кодирования и т.д.;
- изучение перспективных направлений и тенденций развития систем кодирования.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теория информации» относится к дисциплинам блока Б1 - физико-технические основы функционирования телекоммуникационных систем.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теория информации» направлен на формирование следующих компетенций:

ОПК-1 - способен оценивать роль информации, информационных технологий и информационной безопасности в современном обществе, их значение для обеспечения объективных потребностей личности, общества и государства;

ОПК-3 - способен использовать математические методы, необходимые для решения задач профессиональной деятельности.

Компетенция	Результаты обучения, характеризующие сформированность компетенции	
ОПК-1	Знать:	
	- основные понятия и определения теории	
	информации. Уметь:	
	- определять информационные характеристики	
	системы передачи сообщений и каналов связи.	

	Владеть: - методами оценки эффективности систем связи с учетом факторов среды, класса защищенности передаваемой информации и других параметров систем связи.
ОПК-3	Знать: - основные понятия, определения и принципы теории помехоустойчивого кодирования. Уметь: - решать типовые задачи кодирования и декодирования сообщений.
	Владеть: - основами построения математических моделей текстовой информации и моделей систем передачи информации.

4. ОБЪЕМ ДИСЦИПЛИНЫОбщая трудоемкость дисциплины «Теория информации» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

Day a ayyan ya na		Всего	Семестры
Виды учебной работы		часов	5
Контактная работа по видам занятий (всего)		72	72
В том числе:			
Лекции		36	36
Практические занятия (ПЗ)		36	36
Самостоятельная работа		36	36
Виды промежуточной аттестации - зачет		+	+
Общая трудоемкость	час	108	108
	3.e.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

№ π/π	Наименование темы	Содержание раздела	Лекц	Практ. зан.	CPC	Всего, час
1	Системы передачи сообщений. Способы аналитического представления сообщений и сигналов	Информация, сообщение и сигнал. Дискретные и непрерывные источники. Преобразование сообщений в сигнал. Модель радиотехнической системы передачи информации. Информационные сети и информационные потоки. Теорема дискретизации. Квантование непрерывных сигналов. Модуляция и кодирование.	2	2	2	6
2	Информационные характеристики дискретных источников информации	Вероятностное описание дискретных ансамблей. Энтропия как мера неопределенности информации. Свойства энтропии. Взаимная информация и ее свойства. Условная энтропия. Совместная энтропия. Основные свойства энтропии сложных сообщений.	2	2	2	6
3	Информационные характеристики непрерывных источников информации	Энтропия при непрерывном распределении состояний элементов. Свойства дифференциальной энтропии. Энтропия непрерывных сообщений с нормальным и равновероятным распределением состояний элементов. Сравнительная оценка сообщений с нормальным и равновероятным распределениями состояний элементов. Избыточность сообщений.	4	4	4	12
4	Количество информации как мера снятой неопределенности	Количество информации при передаче отдельного элемента дискретного сообщения. Свойства количества информации. Передача дискретных сообщений по каналам с помехами. Количество информации, содержащееся в одиночном сообщении. Свойства частного количества информации. Разность частных количеств информации. Количество информации при передаче сообщений от непрерывного источника.	4	4	4	12
5	Оценка информационных характеристик источников сообщений	Эпсилон-энтропия случайной величины. Связь между энтропией и количеством информации. Понятие эргодического источника сообщений. Марковские процессы. Марковский процесс с дискретным временем. Энтропия и производительность стационарного источника. Понятия однородного, стационарного и регулярного источника информации.	4	4	4	12
6	Информационные характеристики каналов связи	Модели дискретных каналов связи. Скорость передачи информации по дискретному каналу. Пропускная способность дискретного канала без помех. Теорему кодирования для дискретного канала без шумов. Пропускная способность дискретного канала с помехами. Коэффициент использования канала связи. Прямая и обратная теорема Шеннона для канала связи с шумами. Скорость передачи по непрерывному гауссову каналу связи. Объем сигнала. Влияние распределения шумов по спектру на скорость передачи информации. Согласование физических характеристик сигнала и канала.	4	4	4	12

		Итого	36	36	36	108
		помехоустойчивых кодов и их границы. Корректирующие свойства кодов.				
		ошибки. Параметры (характеристики)				
		расстояние по Хэммингу. Вероятность				
		Расстояние, вес, минимальное кодовое				
		Классификация помехоустойчивых кодов.	4	4	4	12
		построения помехоустойчивых кодов.	4	4	4	12
		канала с помехами. Общие принципы				
		сжатия. Теорема Шеннона о кодировании для				
	помехоустойчивых кодов	коды. Цель сжатия данных и типы систем				
	Характеристики эффективных и	таблицы и кодовые деревья. Префексные				
7	Кодирование информации.	Основные характеристики кода. Кодовые				

5.2 Перечень практических занятий

- 1. Энтропия дискретного источника 4 ч.
- 2. Условная энтропия. Совместная энтропия 4 ч.
- 3. Энтропия непрерывных сообщений с нормальным и равновероятным распределением состояний элементов 4 ч.
- 4. Количество информации. Частное количество информации 4 ч.
- 5. Исследование Марковских случайных процессов 4 ч.
- 6. Скорость передачи информации и пропускная способность дискретного канала связи 4 ч.
- 7. Параметры (характеристики) помехоустойчивых кодов и их границы 4 ч.
- 8. Применение методов кодирования в системах связи 4 ч.
- 9. Оценка эффективности систем связи 4 ч.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

Учебным планом по дисциплине «Теория информации» не предусмотрено выполнение курсового проекта (работы).

Учебным планом предусмотрено выполнение расчетного задания, заключающегося в решении прикладных задач из различных разделов курса «Теория информации».

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-1	Знать: - основные понятия и определения теории информации.	Активная работа на практических занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: - определять информационные характеристики системы передачи сообщений и каналов связи.	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: - методами оценки эффективности систем связи с учетом факторов среды, класса защищенности передаваемой информации и других параметров систем связи.	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
ОПК-3	Знать: - основные понятия, определения и принципы теории помехоустойчивого кодирования.	Активная работа на практических занятиях	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь: - решать типовые задачи кодирования и декодирования сообщений.	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: - основами построения математических моделей текстовой информации и моделей систем передачи информации.	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний оцениваются в 6 семестре по двухбальной системе:

«зачтено»;

«не зачтено».

Компетен ция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено	
ОПК-1	Знать: - основные понятия и определения теории информации.	знание учебного материала и использование учебного материала в процессе выполнения заданий	Студент демонстрирует значительное понимание материала. Студент демонстрирует способность использовать знания, умения, навыки в процессе выполнения заданий	демонстрирует значительное понимание материала. Студент демонстрирует способность использовать знания, умения, навыки в процессе выполнения	1. Студент демонстрирует незначительное понимание материала. 2. Студент демонстрирует непонимание заданий.
	Уметь: определять информационные характеристики системы передачи сообщений и каналов связи.	умение использовать учебный материал в процессе выполнения практических работ			3. У студента нет ответа. Не было попытки выполнить задания.
	Владеть: - методами оценки эффективности систем связи с учетом факторов среды, класса защищенности передаваемой информации и других параметров систем связи.	применение учебного материала при решении прикладных задач			
ОПК-3	Знать: - основные понятия, определения и принципы теории помехоустойчивого кодирования. Уметь: - решать типовые задачи кодирования и декодирования сообщений.	знание учебного материала и использование учебного материала в процессе выполнения заданий умение использовать учебный материал в процессе выполнения практических работ			
	Владеть: - основами построения математических моделей текстовой информации и моделей систем передачи информации.	применение учебного материала при решении прикладных задач			

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию (минимум 10 вопросов для тестирования с вариантами ответов)

- 1. Информация может быть нескольких типов (2)(3)
- 1) устойчивая;
- 2) дискретная;
- 3) непрерывная;
- 4) частотная;
 - 2. Частота дискретизации определяет (3)
- 1) период между измерениями непрерывной величины, колеблющихся в разных фазах;
- 2) время, в течении которого затухают колебания исследуемой величины;
- 3) период между измерениями значений непрерывной величины;
- 4) частоту появления импульсов;
 - 3. Сигнал это (1)
- 1) материальный переносчик сообщения, т. е. изменяющаяся физическая величина, обеспечивающая передачу информации по линии связи;
- 2) виртуальный переносчик сообщения, т. е. изменяющаяся величина, обеспечивающая передачу информации по линии связи;
- 3) переносчик сообщения, обеспечивающий передачу сообщений по линии связи;
- 4) информационная характеристика энтропии;
 - 4. Устройство, осуществляющее кодирование называется (2)
- 1) кодеком;
- 2) кодером;
- 3) декодеком;
- 4) декодером;
 - 5. Решающее устройство предназначено для (3)
- 1) проверки отправленного сигнала с целью наиболее полной передачи информации;
- 2) перекодирования принятого сигнала;
- 3) обработки принятого сигнала с целью наиболее полного извлечения из него информации;
- 4) передачи информации;
 - 6. Скорость передачи информации это (2)
- 1) количество сообщений, передаваемое за единицу времени;
- 2) количество информации, передаваемое за единицу времени;
- 3) количество информации, передаваемое в секунду;
- 4) количество сообщений, передаваемое в секунду;
 - 7. Пропускная способность канала зависит от (2)
- 1) отношения уровня частоты сигнала к уровню амплитуды шума;
- 2) логарифма отношения уровня сигнала к уровню шума;
- 3) отношения уровня шума к уровню сигнала;
- 4) отношения уровня сигнала к уровню шума;
 - 8. Информация в теории информации это (3)
- 1) то, что поступает в наш мозг из многих источников и во многих формах и, взаимодействуя там, образует нашу структуру знания;
- 2) неотъемлемый атрибут материи;

- 3) сведения, полностью снимающие или уменьшающие существующую до их получения неопределенность;
- 4) отражает разнообразие передаваемых сведений;
 - 9. Информацию, отражающую истинное положение дел, называют (2)
- 1) понятной;
- 2) достоверной;
- 3) объективной:
- 4) полной;
 - 10. Основной принцип кодирования изображений состоит в том, что (4)
- 1) изображение разбивается на ряд областей с одинаковой яркостью;
- 2) изображение преобразуется во множество координат отрезков, разбивающих изображение на области одинакового цвета;
- 3) изображение разбивается на ряд областей с разной яркостью;
- 4) изображение представляется в виде мозаики квадратных элементов, каждый из которых имеет определенный цвет.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Основные понятия. Информация, сообщение, сигнал.
- 2. Системы передачи сообщений. Способы аналитического представления сообщений и сигналов.
- 3. Дискретные ансамбли и источники. Основные понятия.
- 4. Количество информации в сообщении. Энтропия.
- 5. Условная информация. Условная энтропия.
- 6. Передача дискретных сообщений. Информационные сети и информационные потоки.
- 7. Количество информации, содержащееся в одиночном сообщении. Частное количество информации.
- 8. Относительная энтропия и ее свойства.
- 9. Энтропия при непрерывным распределением состояний.
- 10. Количество информации с непрерывным распределением состояний.
- 11. Скорость передачи информации по каналам связи с помехами.
- 12. Эргодические и Марковские дискретные источники.
- 13. Оптимальные неравномерные коды.
- 14. Общая классификация кодов. Коды с избыточностью. Минимальное кодовое расстояние.
- 15. Понятие канала связи. Объем передаваемого сигнала.
- 16. Модель дискретного канала связи. Двоичный канал со стиранием.
- 17. Информационные пределы избыточности.
- 18. Вероятность ошибки при декодировании. Совершенные и квазисовершенные коды.
- 19. Теорема Шеннона о существовании хороших кодов. Основная проблема теории кодирования.
- 20. Классификация помехоустойчивых кодов.

- 21. Методы сокращения избыточности в системах передачи информации.
- 22. Информационные характеристики источника дискретных сообщений.
- 23. Кодирование сообщений с заданной мерой верности. Основные характеристики корректирующих кодов.
- 24. Пропускная способность канала связи.
- 25. Дискретные и непрерывные источники. Преобразование сообщений в сигнал. Модуляция и кодирование.
- 26. Теорема дискретизации. Квантование непрерывных сигналов. Скорость создания информации источником без памяти при равномерном кодировании.
- 27. Прямая теорема кодирования Шеннона для дискретных каналов без памяти. Обратная теорема Шеннона. Информационные пределы избыточности.
- 28. Способы введения избыточности в передаваемые сообщения.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Системы передачи сообщений. Способы аналитического представления сообщений и сигналов	ОПК-1 ОПК-3	Тест, решение практических задач, выполнение расчетного задания
2	Информационные характеристики дискретных источников	ОПК-1 ОПК-3	Тест, решение практических задач, выполнение расчетного задания
3	Информационные характеристики непрерывных источников	ОПК-1 ОПК-3	Тест, решение практических задач, выполнение расчетного задания
4	Количество информации как мера снятой неопределенности	ОПК-1 ОПК-3	Тест, решение практических задач, выполнение расчетного задания
5	Оценка информационных характеристик источников сообщений	ОПК-1 ОПК-3	Тест, решение практических задач, выполнение расчетного задания
6	Информационные характеристики каналов связи	ОПК-1 ОПК-3	Тест, решение практических задач, выполнение расчетного задания
7	Кодирование информации. Характеристики эффективных и помехоустойчивых кодов	ОПК-1 ОПК-3	Тест, решение практических задач, выполнение расчетного задания

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

При преподавании дисциплины «Теория информации» в качестве формы оценки знаний студентов используются: тесты, решение практических задач различной сложности, выполнение расчетного задания, зачет.

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

Основная:

- 1. Котоусов А.С. Теория информации : учеб. пособие / А.С. Котоусов. М. : Радио и связь, 2003. 80 с. : ил. ISBN 5-256-01686-5 : 93-00.
- 2. Золотарев В.В. Помехоустойчивое кодирование: методы и алгоритмы: Справочник / В. В. Золотарев, Г. В. Овечкин. М.: Горячая линия -Телеком, 2004. 126 с.: ил. ISBN 5-93517-169-4: 130-00.
- 3. Вернер М. Моделирование систем: Учебник / Б. Я. Советов. 4-е изд., стереотип. М.: Высш. шк., 2005. 343 с. : ил. ISBN 5-06-003860-2 : 202-00. Рекомендовано Мин. обр. РФ в качестве учебника для студентов вузов

Дополнительная:

1. Поздышева О.В. Теория информации и кодирования: учеб. пособие [Электронный ресурс]. – Электрон. текстовые, граф. данные (2,91 МБ) / О.В. Поздышева. – Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2017. - 1 файл. - 30-00.

- 2. Бугров Ю.Г. Системные основы оценивания защиты информации [Электронный ресурс] : учеб. пособие / Ю. Г. Бугров, В. Б. Щербаков. Электрон. текстовые, граф. дан. (1811Кб). Воронеж : ВГТУ, 2005. 1 электрон. опт. диск (CD-ROM). 30-00.
- 3. Блинова И.В. Теория информации. Учебное пособие / И.В. Блинова, И.Ю. Попов. СПб.: Университет ИТМО, 2018. 84 с.
- 4. Кудряшов Б.Д. Теория информации: учебник для вузов. СПб.: Питер, 2009, 320 с., ил.
- 5. Хэмминг Р.В. Теория кодирования и теория информации: Пер. с англ. М.: Радио и связь, 1983. 176 с., ил.
- 6. Золотарев В.В., Овечкин Г.В. Помехоустойчивое кодирование. Методы и алгоритмы: Справочник/Под ред. чл. кор. РАН Ю.Б. Зубарева. М.: Горячая линия Телеком, 2004.
- 7. Березкин Е.Ф. Основы теории информации и кодирования. Учеб. пособие. М.: НИЯУ МИФИ, 2010. 312 с. Методические разработки:
- 1. Поздышева О.В. Методические указания к практическим занятиям по дисциплине "Теория информации" для студентов специальности 090301 "Компьютерная безопасность", 090303 «Информационная безопасность автоматизированных систем» очной формы обучения [Электронный ресурс] / Каф. систем информационной безопасности; Сост. О. В. Поздышева. Электрон. текстовые, граф. дан. (743 Кб) Воронеж : ФГБОУ ВПО "Воронежский государственный технический университет", 2014. 1 файл. 00-00.
- 2. Методические указания к самостоятельным работам по дисциплинам «Теория информации», «Теория информации и кодирования» для студентов специальностей 090301 «Компьютерная безопасность», 090302 «Информационная безопасность телекоммуникационных систем», 090303 «Информационная безопасность автоматизированных систем» очной формы обучения [Электронный ресурс] / Каф. систем информационной безопасности; Сост. О.В. Поздышева. Электрон. текстовые, граф. дан. (247 Мб). Воронеж: ФГБОУ ВПО "Воронежский государственный технический университет", 2015. 1 файл. 00-00.
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

http://eios.vorstu.ru/

http://www.studentlibrary.ru/

http://znanium.com/

http://ibooks.ru/

http://e.lanbook.com/

http://www.iprbookshop.ru/

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теория информации» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

На практических занятиях проводится тестирование и решение задач в соответствии с темой занятия. Методики решения задач приведены в методических указаниях к практическим занятиям.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию о всех видах самостоятельной работы студенты получают на занятиях.

Контроль усвоения материала дисциплины производится проверкой выполнения тестов, решения практический задач, решения расчетного задания. Освоение дисциплины оценивается на зачете.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.

Практические занятия	Практические занятия позволяют научиться применять
	теоретические знания, полученные на лекции при решении
	конкретных задач. Чтобы наиболее рационально и полно
	использовать все возможности практических занятий для
	подготовки к ним необходимо: следует разобрать лекцию по
	соответствующей теме, ознакомится с соответствующим разделом
	учебного пособия по данной дисциплине, проработать
	дополнительную литературу и источники, решить задачи для
	самостоятельного решения из соответствующего раздела
	методических указаний к практическим занятиям.
Самостоятельная	Самостоятельная работа студентов способствует глубокому
работа	усвоения учебного материала и развитию навыков
	самообразования. Самостоятельная работа предполагает
	следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в
промежуточной	течение всего семестра. Интенсивная подготовка должна начаться
аттестации	не позднее, чем за месяц-полтора до промежуточной аттестации.
	При подготовке к зачету необходимо выполнение расчетного
	задания.