Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет» Строительнополитехнический колледж

Строительно-политехнический колледж

РАСЧЕТ ЭНЕРГОЭФФЕКТИВНОСТИ ЖИЛОГО ЗДАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению практических и самостоятельных работ по дисциплине «Энергосбережение в городском хозяйстве»

для студентов направления

08.02.01 «Строительство и эксплуатация зданий и сооружений» всех форм обучения

Составители:

Преподаватель СПК, Севрюкова К.С.

Расчет энергоэффективности жилого здания: методические указания к выполнению практических занятий по дисциплине «Энергосбережение в городском хозяйстве» для студентов направления 08.02.01 «Строительство и эксплуатация зданий и сооружений» всех форм обучения / ФГБОУ ВО «Воронежский государственный технический университет»; сост.: К.С. Севрюкова. Воронеж: Изд-во ВГТУ, 2021. 17 с.

Основной целью методических указаний является объяснение сути теплотехнического расчета, приводится пример выполнения внеаудиторной самостоятельной работы «Теплотехнический расчет ограждающей конструкции».

Предназначены для самостоятельной работы и проведения практических работ по дисциплине «Энергосбережение в городском хозяйстве» для студентов специальности 08.02.01 «Строительство и эксплуатация зданий и сооружений».

Методические указания подготовлены в электронном виде и содержатся в файле OП16-ПР2.pdf.

Ил. 0. Табл. 10. Библиогр.: 5 назв.

УДК 621.3.049.7.002 (075)

ББК 38.54

Рецензент - О. Ю. Макаров, д-р техн. наук, проф. кафедры конструирования и производстварадиоаппаратуры ВГТУ

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

ВВЕДЕНИЕ

Методические указания предназначены для студентов специальности 08.02.01 «Строительство и эксплуатация зданий и сооружений. В данных методических указаниях объясняется суть расчета энергоэффективности жилого здания, разбирается пример выполнения внеаудиторной самостоятельной работы «Расчет энергоэффективности жилого здания», в приложении приведен пример по определению класса энергоэффективности. Методические указания также могут использоваться при выполнении практических работ по теме: «Расчет энергоэффективности жилого здания».

Методические указания имеют лишь некоторые сведения из нормативной литературы. Недостающую информацию можно найти в сводах правил (СП), приведенных в списке литературы.

общие положения

Самостоятельная работа студентов представляет собой работу, которую выполняют студенты по заданию и под руководством преподавателя без его непосредственного участия.

самостоятельной работы задачами студентов систематизация и закрепление знаний, умений и навыков, полученных в ходе практических занятий; формирование умений работать со специальной и справочной литературой, а также с Интернет-ресурсами; формирование самостоятельности мышления, стремления к самосовершенствованию самореализации; формирование и развитие общих компетенций и подготовка к формированию профессиональных компетенций согласно ΦΓΟС овладение практическими навыками применения информационнокоммуникационных технологий в профессиональной деятельности; развитие исследовательских умений.

1. ЭНЕРГОЭФФЕКТИВНОСТЬ ЗДАНИЙ И СООРУЖЕНИЙ

В проекте здания обязательно наличие раздела «Энергоэффективность». В нем должны быть представлены сводные показатели энергоэффективности принятых решений в соответствующих частях проекта здания.

Сводные показатели должны быть сопоставлены с нормативными показателями удельного расхода тепловой энергии $q^{\text{т.от}}$, кВт·ч/(м²·год), которые установлены нормативами по энергосбережению (СП 50.13330.2012 «Тепловая защита зданий»).

В пояснительной записке к разделу «Энергоэффективность» обычно содержаться:

- общая энергетическая характеристика рассматриваемого объекта;
- сведения о проектных решениях, направленных на повышение эффективности использования энергии;
- описание технических решений ограждающих конструкций с расчетом приведенных сопротивлений теплопередаче (за исключением светопрозрачных) с приложением протоколов теплотехнических испытаний, подтверждающих принятые расчетные теплофизические показатели строительных материалов, отличающиеся от показателей СНиП 23-02-2003 и сертификата соответствия для светопрозрачных конструкций;
- принятые виды пространства под первым и над последним этажами с указанием температуры внутреннего воздуха, принятой в расчетах, наличие мансардных этажей, используемых для жилья, тамбуров входных дверей и отопления вестибюлей, остекления лоджий;
- принятые системы отопления, вентиляции и кондиционирования воздуха, сведения о наличии приборов учета и регулирования, обеспечивающих эффективное использование энергии;
- специальные приемы повышения энергоэффективности здания: устройства по пассивному использованию солнечной энергии, системы утилизации тепла вытяжного воздуха, теплоизоляция трубопроводов отопления и горячего водоснабжения, проходящих в холодных подвалах, применение тепловых насосов и прочее;
- информация о выборе и размещении источников для объекта. В необходимых случаях приводится технико-экономическое обоснование энергоснабжения от автономных источников энергии вместо централизованных;
- сопоставление проектных решений и технико-экономических показателей в части энергопотребления с требованиями норм;
 - заключение.

Пояснительная записка заканчивается составлением энергетического паспорта здания.

Энергетический паспорт жилых и общественных зданий предназначен для подтверждения соответствия показателей энергетической эффективности и теплотехнических показателей здания, показателям установленным в нормативных документах.

Энергетический паспорт здания должен содержать:

- общую информацию о проекте;
- расчетные условия;
- сведения о функциональном назначении и типе здания;
- объемно-планировочные и компоновочные показатели здания;
- расчетные энергетические показатели здания, в том числе:

показателиэнергоэффективности, теплотехнические показатели;

- сведения о сопоставлении с нормируемыми показателями;
- рекомендации по повышению энергоэффективности здания;
- результаты измерения энергоэффективности и уровня тепловойзащиты здания после годичного периода его эксплуатации;
- класс энергетической эффективности здания.

Ниже рассмотрен ряд таблиц, в которых содержатся основные характеристики и показатели здания, по которым рассчитывается энергетическая эффективность здания.

1.1 Общая информация о здании

Таблица 1

Общая информация о здании

Дата заполнения (число, месяц, год)	
Адрес здания	
Разработчик проекта	
Назначение здания, серия	
Этажность	
Конструктивное решение	

Рассмотрим ниже составляющие таблицы 1:

<u>Назначение</u> здания, серия: жилое/ общественное/ производственное/ образовательное учреждение/ лечебно-профилактическое учреждение.

Если здание жилое, то указывается, многоквартирное или одноквартирное или одноквартирное блокированное согласно СП 55.13330.2016 «Дома жилые одноквартирные» (раздел 1).

<u>Дом жилой одноквартирный (отдельно стоящий)</u> — дом, предназначенный для постоянного совместного проживания одной семьи и связанных с ней родственными узами или иными близкими отношениями людей.

<u>Дом жилой</u> — здание квартирного типа, состоящее из двух и более квартир, каждая из которых имеет непосредственный выход на приквартирный участок.

<u>Этажноств.</u> Указывается количество этажей и тип: малоэтажное (до трех этажей включительно) или многоэтажное. Конструктивное решение. Указывается конструктивное исполнение здания — кирпичное, из

газобетонных панелей, монолитное железобетонное, с утеплителем и т.п.

1.2 Расчетные условия функционирования здания

В таблице «Расчетные условия» приводятся значения параметров, определяемых по географическому местонахождению обследуемого объекта.

Расчетные условия функционирования здания

Таблица 2

	\mathcal{J}	/ 1	7 1	
	Наименование расчетных	Обозначение	Единицы измерения	Расчетное
п/п	параметров	символа	параметра	значение
	Расчетная температура наружного			
	воздуха для проектирования	t _H	${\mathbb C}$	
	теплозащиты			
	Средняя температура наружного	+	${f c}$	
	воздуха за отопительный период	t _{or}	C	
	Продолжительность	7	CV/T	
	отопительного периода	Z _{OT}	сут	
	Градусо-сутки отопительного	ГСОП	°С*сут/год	
	периода	1 COII	С Су1/10Д	
	Расчетная температура			
	внутреннеговоздуха для	t _B	${\mathbb C}$	
	проектирования теплозащиты			

Рассмотрим составляющие таблицы 2:

<u>Расчетная температура наружного воздуха для проектирования</u> <u>теплозащиты.</u> Принимается в соответствии СП 131.13330.2020 «Строительная климатология» по таблице 3.1, столбец 5.

<u>Продолжительность от опительного периода и средняя температура</u> наружного воздуха за от от периода со средней суточной температурой воздуха $\leq 8^{\circ}$ С в соответствии СП 131.13330.2020 «Строительная климатология» по таблице 3.1, столбцы 11 и 12.

Градусо-сумки от опительного периода (ГСОП). Значение определяется в соответствии СП 50.13330.2012 «Тепловая защита зданий» по формуле (5.2):

$$\Gamma \text{CO}\Pi = (t_{\text{B}} - t_{\text{OT}}) \mathbb{Z}_{\text{OT}} , \qquad (1.1)$$

где $t_{\rm g}$ — расчетная температура внутреннего воздуха для проектирования теплозащиты. Допустимая температура воздуха принимается в соответствии СП 131.13330.2020 «Строительная климатология» по таблице 4.1.

Геометрические показатели здания

	1 comerph teckne non	шэшт эдший	
п/п	Показатель	Обозначение символа и единицы измерения показателя	Расчетное (проектное) значение показателя
	Сумма площадей этажей здания	A_{or}, M^2	
	Площадь жилых помещений	A_{oT}, M^2 A_{jk}, M^2 V_{oT}, M^3	
	Отапливаемый объем	$V_{\text{ot}}, \text{m}^3$	
	Коэффициент остекленности фасада здания	f	
	Показатель компактности здания	$K_{\text{комп}}$	
	Общая площадь наружных ограждающих конструкций здания	$A_{\rm H}^{\rm cym},{\rm M}^2$	
	в том числе:		
	фасадов	$A_{\phi ac}$, M^2	
	окон и балконных дверей	A_{ok} , M^2	
	входных дверей	A_{AB} , M^2	
	чердаков	$A_{\text{черд}}, M^2$	
	Окон по сторонам света:	•	
	С		
	3		
	В		
	Ю		
	ЮВ/Ю3		
	CB/C3		

Рассмотрим составляющие таблицы 3:

Отапливаемый объем и площади в том числе:

- сумма площадей этажей здания;
- площадь жилых помещений;
- расчетная площадь (общественных зданий);
- общая площадь наружных ограждающих конструкций (и ее составляющие).

Должны браться из типового проекта здания, но если получение этих данных сопряжено с трудностями, то эти значения считаются приближенно.

<u>Площадь жилых помещений</u>, к которым относятся спальни, детские, гостиные, кабинеты, библиотеки, столовые, кухни-столовые, m^2 .

<u>Отвативаемый объем,</u> ограниченный внутренними поверхностями наружных ограждений здания — стен, покрытий (чердачных перекрытий),

перекрытий пола первого этажа или пола подвала при отапливаемом подвале, m^3 .

Коэффициент остекленности фасада здания — это отношение площадей светопроемов к суммарной площади наружных ограждающих конструкций фасада здания, включая светопроемы в соответствии ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

<u>Показатель компактности здания</u> — это отношение общей площади внутренней поверхности наружных ограждающих конструкций здания к заключенному в них отапливаемому объему в соответствии ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

1.4 Теплотехнические показатели

Таблица 4 Теплотехнические показатели

		Обозначение и	**	Расчетное	
Π/Π	Показатель	единицы	Нормируемое	(проектное)	
		измерения	значение	значение	
	Приведенное сопротивление				
	теплопередаче наружных	$R_{\pi p}^{0}$, M^{2} °C/BT			
	ограждений, в том числе	•			
	стен	$R_{\mathrm{np,cr}}^{0}$			
	окон и балконных дверей	$R^0_{ m np,ok}$			
	входных дверей	$R^0_{\mathrm{пр,дв}}$			
	перекрытий (совмещенных)	$R_{ m np,nep}^0$			
	чердаков	$R^0_{ m пр,черд}$			

Рассмотрим значения из таблицы 4:

<u>Нормируемые значения приведенных сопротивлений теплопередаче</u> ограждающих конструкций считаются согласно СП 50.13330.2012 «Тепловая защита зданий», п. 5.2, таблицы 3 в зависимости от градусо-суток района строительства:

$$R_0^{\text{HODM}} = a \cdot \Gamma CO\Pi + b \,, \tag{1.2}$$

где *ГСОП* - градусо-сутки отопительного периода, °С·сут;

a, b - коэффициенты, значения которых следует принимать по данным СП 50.13330.2012 «Тепловая защита зданий», табл. 3 для соответствующих групп зданий, за исключением графы 6 для группы зданий в поз. 1, где для интервала до 6000 °C·сут: a = 0,000075, b = 0,15; для интервала 6000 - 8000 °C·сут: a = 0,00005, b = 0,3.

<u>Расчетные значения</u> рассчитываются согласно СП 50.13330.2012 «Тепловая защита зданий» по формуле (Е.6):

$$R_0 = \frac{1}{\alpha_s} + \sum_i R_i + \frac{1}{\alpha_u}, \qquad (1.3)$$

где $\alpha_{\scriptscriptstyle e}$ - коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м².°С) по СП 50.13330.2012 «Тепловая защита зданий», таблица 4;

 $\alpha_{_{\it H}}$ - коэффициент теплоотдачи наружной поверхности ограждающей конструкции, ${\rm BT/(m^2.°C)}$ по СП 50.13330.2012 «Тепловая защита зданий», таблица 6;

 R_i - термическое сопротивление слоя части фрагмента, (м² · °C)/Вт, определяемое по формуле:

$$R_i = \frac{\delta_i}{\lambda_i},\tag{1.4}$$

где δ_i - толщина слоя, м;

 λ_i - теплопроводность материала слоя, $BT/(M \cdot {}^{\circ}C)$.

Теплозащитная оболочка здания должна гарантировать выполнение следующих условий:

- приведенное сопротивление теплопередаче отдельных ограждающих конструкций должно быть не меньше нормируемых значений;
- удельная теплозащитная характеристика здания должна быть не больше нормируемого значения (комплексное требование);
- температура на внутренних поверхностях ограждающих конструкций должна быть не ниже минимально допустимых значений (санитарногигиеническое требование).

Требования тепловой защиты здания будут выполнены при одновременном выполнении требований - а, б и в (СП 50.13330.2012 «Тепловая защита зданий»).

	Вспомогательные показатели					
п/п	Показатель	измерения	Расчетное проектное значениепоказателя			
	Общий коэффициент теплопередачи здания	$K_{\text{общ}}, B_{\text{Т}}/(M^2.{}^{\circ}\text{C})$				
	Средняя кратность воздухообмена здания за отопительный период при удельной норме воздухообмена	$\mathbf{n}_{\scriptscriptstyle \mathrm{B}},\mathrm{H}^{-1}$				
	Удельные бытовые тепловыделения	$q_{\text{быт}}$, $\mathrm{Br/m^2}$				

Вспомогательные показатели

Рассмотрим составляющие таблицы 5.

Общий коэффициент теплопередачи здания $BT/(M^2 \cdot {}^{\circ}C)$ определяется по формуле (Ж.2) в соответствии СП 50.13330.2012 «Тепловая защита зданий»:

$$K_{o\delta u_i} = \frac{1}{A_u^{\text{Cym}}} \cdot \sum_i (n_{t,i} \cdot \frac{A_{\phi,i}}{R_{o,i}}), \qquad (1.5)$$

где $R_{o,i}^{np}$ - расчетное сопротивление теплопередаче і-го фрагмента теплозащитной оболочки здания, (м².°C)/Вт;

 $A_{\phi,i}$ - площадь соответствующего фрагмента ограждения, м²;

 $n_{t,i}$ - коэффициент, учитывающий отличие внутренней или наружной температуры у конструкции от принятых в расчете;

 A_{μ}^{cym} - общая площадь наружных ограждающих конструкций здания, м².

Средняя кратность воздухообмена здания за отопительный период n_{e} , ч⁻¹ рассчитывается по формуле (Г.4) в [СП 50.13330.2012 «Тепловая защита зданий»]:

$$n_{e} = \frac{\frac{L_{\text{genm}} \cdot n_{\text{genm}}}{168} + \frac{G_{\text{un}\phi} \cdot n_{\text{un}\phi}}{168 \cdot \rho_{e}^{\text{genm}}}}{\beta_{V} \cdot V_{om}}$$

$$(1.6)$$

где $L_{\rm \tiny \it GeHm}$ - количество приточного воздуха в здании при неорганизованном притоке, м 3 /ч, $L_{\rm \tiny \it GeHm}$ = $3\cdot A_{\rm \tiny \it MC}$ для жилых зданий;

 A_{∞} - площадь жилых помещений, к которым относятся спальни, детские, гостиные, кабинеты, библиотеки, столовые, кухни-столовые, м²;

 $n_{\mbox{\tiny genm}}$ - число часов работы механической вентиляции в течение недели, ч. $n_{\mbox{\tiny genm}}=168$ - количество часов в неделе;

 $G_{un\phi}$ - количество инфильтрующегося воздуха в здание через ограждающие конструкции, кг/ч: для жилых зданий —воздуха, поступающего в лестничные клетки в течение суток отопительного периода; $G_{un\phi}=0.3\cdot\beta_V\cdot V_{oбuq}$ для зданий до трех этажей;

 n_{und} - число часов учета инфильтрации в течение недели, ч, $n_{und} = 168$

 $\rho_s^{\text{вент}}$ - средняя плотность приточного воздуха за отопительный период, кг/м³ по СП 50.13330.2012 «Тепловая защита зданий»:

$$\rho_{\rm g}^{\rm gehm} = 353/[273 + t_{\rm om}], \tag{1.7}$$

 $eta_{\!\scriptscriptstyle V}$ - коэффициент снижения объема воздуха в здании, учитывающий наличие внутренних ограждающих конструкций. При отсутствии данных принимать $eta_{\!\scriptscriptstyle V}=0,\!85$;

 V_{om} - отапливаемый объем здания, м³.

 $q_{\rm \it film}$, ${\rm BT/m^2}$ — величина бытовых тепловыделений на 1 м 2 площади жилых помещений ($A_{\rm inc}$), принимаемая для:

- а) жилых зданий с расчетной заселенностью квартир менее 20 м² общей площади на человека $q_{\scriptscriptstyle \it Obl} = 17~{\rm BT/M^2}$;
- б) жилых зданий с расчетной заселенностью квартир 45 м 2 общей площади и более на человека $q_{\rm four}=10~{\rm BT/M}^2$;
- в) других жилых зданий в зависимости от расчетной заселенности квартир по интерполяции величины $q_{\delta \omega m}$ между 17 и 10 Вт/м² [СП 50.13330.2012 «Тепловая защита зданий»].

Таблица 6

Удельные характеристики здания

п/п	Показатель	Обозначение показателя и единица измерения	Расчетное проектное значение показателя
	Удельная теплозащитная характеристика здания	k _{об} , (Вт/м ³ ∗ °С),	
	Удельная вентиляционная характеристика здания	$\mathbf{k}_{\text{вент}}$, (Вт/м ³ * °C),	
	Удельная характеристика бытовых тепловыделений здания	$k_{\text{быт}}$, (Bт/м ³ * °C),	
	Удельная характеристика теплопоступлений в здание от солнечной радиации	k _{рад} , (Вт/м³ ∗ °С),	

Рассмотрим значения из таблицы 6.

Удельная теплозащитная характеристика здания определяется по формуле (Ж.1) в соответствии СП 50.13330.2012 «Тепловая защита зданий»:

$$k_{o\delta} = \frac{1}{V_{o\delta}} \sum_{i} (n_{t,i^*} \cdot \frac{A_{\phi,i}}{R_{oi}^{np}}) = K_{\kappa o m n} \cdot K_{o \delta u \mu}$$
(1.8)

Удельная вентиляционная характеристика здания определяется по формуле (Γ .2) в соответствии СП 50.13330.2012 «Тепловая защита зданий»:

$$k_{\text{genm}} = 0.28cn_{\text{g}} \cdot \beta_{\text{V}} \rho_{\text{g}}^{\text{genm}} \cdot (1 - k_{\text{s}\phi}), \qquad (1.9)$$

где c - удельная теплоемкость воздуха, равная $1 \kappa \text{Дж/(кг·K)};$

 $ho_{\scriptscriptstyle 6}^{\scriptscriptstyle 6 e H m}$ - средняя плотность приточного воздуха за отопительный период, кг/м 3 (то же, что указано ранее);

 $k_{s\phi}$ - коэффициент эффективности рекуператора: $k_{s\phi}$ отличен от нуля в том случае, если: средняя воздухопроницаемость квартир жилых и помещений общественных зданий (при закрытых приточно-вытяжных вентиляционных отверстиях) обеспечивает в период испытаний воздухообмен кратностью n50 ч⁻¹, при разности давлений 50 Па наружного и внутреннего воздуха при вентиляции с механическим побуждением n $50 \le 2$ ч⁻¹; кратность воздухообмена зданий и помещений при разности давлений 50 Па и их среднюю воздухопроницаемость определяют по ГОСТ 31167-2009. Принимаем равным 0,4.

Удельная характеристика бытовых тепловыделений здания рассчитывается по формуле из СП 50.13330.2012 «Тепловая защита зданий»:

$$k_{\delta \omega m} = \frac{q_{\delta \omega m} \cdot A_{\omega}}{V_{om}(t_{\varepsilon} - t_{om})} \tag{1.10}$$

Удельная характеристика теплопоступлений в здание от солнечной радиации определяется по формуле Г.7:

$$k_{pa\delta} = \frac{11.6 \cdot Q_{pa\delta}^{co\delta}}{V_{om} \cdot \Gamma CO\Pi} \tag{1.11}$$

где Q_{pao}^{soo} - теплопоступления через окна от солнечной радиации в течение отопительного периода, МДж/год, для четырех фасадов зданий, ориентированных по четырем направлениям, определяемые по формуле:

$$Q_{pao}^{coo} = \tau_{1o\kappa} \cdot \tau_{2o\kappa} \cdot (A_{o\kappa 1}I_1 + A_{o\kappa 2}I_2 + A_{o\kappa 2}I_3 + A_{o\kappa 4}I_4)$$
 (1.12)

где τ_{low} - коэффициент относительного проникания солнечной радиации для светопропускающих заполнений окон, принимается по СП 23-101-2004 «Проектирование тепловой защиты зданий» и равен 0,68;

 $au_{2o\kappa}$ - коэффициент, учитывающий затенение светового проема окон непрозрачными элементами заполнения, принимается по СП 23-101-2004 «Проектирование тепловой защиты зданий» и равен 0.8;

 $A_{\rm ok}$ - площадь светопроемов фасадов здания (глухая часть балконных дверей исключается), соответственно ориентированных по четырем направлениям, м 2 ;

I - средняя за отопительный период величина солнечной радиации на вертикальные поверхности при действительных условиях облачности, соответственно ориентированная по четырем фасадам здания, МДж/(м 2 ·год), определяется по СП 23-101-2004 «Проектирование тепловой защиты зданий».

1.7 Коэффициенты и комплексные показатели

Таблица 7

Коэффициенты и комплексные показатели

Показатель	Обозначение	Нормативное значение показателя
1. Коэффициент	v	
эффективности	ζ	
авторегулирования отопления		
2. Коэффициент,		
учитывающий снижение		
теплопотребления жилых	ξ	
зданий при наличии	J	
поквартирного учета тепловой		
энергии на отопление		

3. Коэффициент	Кэф	
эффективности рекуператора	-1	
4. Коэффициент,		
учитывающий снижение		
использования	υ	
теплопоступлений в период		
повышения их над		
теплопотерями		
5. Коэффициент учета		
дополнительных теплопотерь	$\boldsymbol{\beta}_h$	
системы отопления		

Рассмотрим составляющие таблицы 7.

- ζ Коэффициент эффективности авторегулирования подачи теплоты в системах отопления, рекомендуемые значения:
- $\zeta = 0.7$ в системе без термостатов и с центральным авторегулированием на вводе с коррекцией по температуре внутреннего воздуха;
- $\zeta=0.5$ в системе без термостатов и без авторегулирования на вводе регулирование центральное в центральном тепловом пункте (ЦТП) или котельной.
- ξ коэффициент, учитывающий снижение теплопотребления жилых зданий при наличии поквартирного учета тепловой энергии на отопление, принимается до получения статистических данных фактического снижения $\xi=0,1$;
 - $K_{9\varphi}$ Коэффициент эффективности рекуператора;
- v коэффициент снижения теплопоступлений в период превышения их над теплопотерямизасчет тепловой инерции ограждающих конструкций определяется по приложению Γ по СП 50.13330.2012 «Тепловая защита зданий»:

$$\upsilon = 0.7 + 0.000025(\Gamma CO\Pi - 1000) \tag{1.13}$$

- β_h коэффициент учета дополнительных теплопотерь системы отопления, связанное с дискретностью номинального теплового потока номенклатурного ряда отопительных приборов, их дополнительными теплопотерями через зарадиаторные участки ограждений, повышенной температурой воздуха в угловых помещениях, теплопотерями трубопроводов, проходящих через неотапливаемые помещения для:
 - многосекционных и других протяженных зданий $\beta_h = 1,13$;
 - зданий башенного типа $\beta_h = 1,11$;
 - зданий с отапливаемыми подвалами или чердаками $\beta_h = 1.07$;
- зданий с отапливаемыми подвалами и чердаками, а также с квартирными генераторами теплоты $\beta_h = 1,05$.

•

Комплексные показатели расходов тепловой энергии

Таблица 8

Показатель	Обозначение	Значение показателя
Расчетная удельная характеристика расхода тепловой энергии на отопление и вентиляцию здании за отопительный период	$oldsymbol{q}_{ exttt{p}}^{ exttt{ott}}, exttt{Bt/(м3\cdot ^{\circ}C)}$	
Нормируемая удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий	$oldsymbol{q}_{ exttt{ott}}^{ exttt{Tp}}$, Вт $/(exttt{M}oldsymbol{3}^{ exttt{o}} exttt{C})$	
Класс энергосбережения Соответствует ли проект здания нормативному		
	характеристика расхода тепловой энергии на отопление и вентиляцию здании за отопительный период Нормируемая удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий Класс энергосбережения Соответствует ли проект	характеристика расхода тепловой энергии на отопление и вентиляцию здании за отопительный период Нормируемая удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий Класс энергосбережения Соответствует ли проект здания нормативному $q_{\text{от}}^{\text{от}}$, $B_{\text{T}}/(M3 \cdot {}^{\circ}\text{C})$

Рассмотрим значения показателей из таблицы 8.

Удельный расход тепловой энергии на отопление и вентиляцию здания за отопительный период q, кВт·ч/(м³·год) или, кВт·ч/(м²·год) следует определять по формуле [СП 50.13330.2012 «Тепловая защита зданий»]:

$$q = 0.024 \cdot \Gamma CO\Pi \cdot q_p^{om} \tag{1.14}$$

где q_p^{om} - расчетная удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий за отопительный период [СП 50.13330.2012 «Тепловая защита зданий»]:

$$q_p^{om} = (k_{o6} + k_{genm} - (k_{gin} + k_{pag}) \cdot \upsilon \cdot \zeta)(1 - \xi) \cdot \beta_h$$
 (1.15)

где $k_{\text{об}}$ - удельная теплозащитная характеристика здания, $Bm/M^{3}{}^{\circ}C$;

 k_{Beht} - удельная вентиляционная характеристика здания, $\mathit{Bm}/\mathit{M}^3{}^{\circ}\mathit{C}$;

 $k_{\text{быт}}$ - удельная характеристика бытовых тепловыделений здания, $\mathit{Bm} / \mathit{m}^3 \,{}^{\circ} \mathit{C}$;

 $k_{\rm pag}$ - удельная характеристика теплопоступлений в здание от солнечнойрадиации, ${\it Bm/m}^3\,{}^{\circ}{\it C}$.

Расход тепловой энергии на отопление и вентиляцию здания за отопительный период Q_{om}^{rod} следует определять по формуле [СП 50.13330.2012 «Тепловая защита зданий»]:

$$Q_{om}^{roo} = 0.024 \cdot \Gamma CO\Pi \cdot V_{om} \cdot q_p^{om}$$
 (1.16)

Таблица 9

Нормируемая (базовая) удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий, $\boldsymbol{q}_{\text{от}}^{\text{тр}}$, $Bm/_{M}^{3}$ °C по СП 50.13330.2012 «Тепловая защита зданий»

Тип здания		Этажность здания						
	1	2	3	4, 5	6, 7	8, 9	10, 11	12 и выше
Жилые многоквартирные, гостиницы, общежития	0,455	0,414	0,372	0,359	0,336	0,319	0,301	0,290

Примечание: Для регионов, имеющих значение ГСОП=8000 °С·сут и более, нормируемые $q_{\text{от}}^{\text{тр}}$ следует снизить на 5%

Класс энергоэффективности определяется по величине отклонения расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемой. Класс энергосбережения определяется по формуле:

$$(q_p^{om} - q_{om}^{mp})/q_{om}^{mp} \cdot 100\% (1.17)$$

Таблица 10 Классы энергосбережения жилых и общественных зданий, по СП 50.13330.2012 «Тепловая защита зданий»

Обозначение класса	характеристики расход		Рекомендуемые мероприятия, разрабатываемые субъектами РФ
При пр	оектировании и	эксплуатации новых и реконс	труируемых зданий
A++	Очень высокий	Ниже -60	Экономическое стимулирование
A+		От -50 до -60 включительно	
A		От -40 до -50 включительно	
B+	Высокий	От -30 до - 40 включительно	Экономическое стимулирование

В		От -15 до -30 включительно	
C+	Нормальный	От -5 до -15 включительно	Мероприятия не разрабатываются
С		От +5 до -5 включительно	
C-		От +15 до +5 включительно	
	При эксплу	уатации существующих здани	й
D	Пониженный	От +15,1 до +50 включительно	Реконструкция при соответствующем экономическом обосновании
E	Низкий	Более +50	Реконструкция при соответствующем экономическом обосновании, или снос

<u>Пример расчета энергоэффективности жилого здания представлен в приложении 1</u>

Приложение 1. ПРИМЕР РАСЧЕТА энергоэффективности жилого здания.

Таблица 1

Общая информация о здании

Дата заполнения (число, месяц, год)	24 апреля 2019
Адрес здания	г. Воронеж, ул. Орджоникидзе, д. 10/12
Разработчик проекта	Гипрогор, архитектор Заболотная А. Ю.
Назначение здания, серия	Жилой многоквартирный дом, серия 1- 204-5 (рис.44, рис.45)
Этажность	3, малоэтажное
Количество квартир	24
Расчетное количество жителей или служащих	70
Размещение в застройке	Отдельностоящее
Конструктивное решение	Не полный каркас

Таблица 2

Расчетные условия

п/п	Наименование расчетных параметров	Обозначени е символа	Единицы измерения параметра	Расчетное значение
	Расчетная температура наружного воздуха для проектирования теплозащиты	t _H	${\mathbb C}$	-24
	Средняя температура наружного воздуха за отопительный период	t _{or}	${\mathbb C}$	-2,5
	Продолжительность отопительного периода	Z _{OT}	сут	190

Градусо-сутки отопительного периода	ГСОП	°С*сут/год	4275
Расчетная температура внутреннего воздуха для проектирования теплозащиты	t _B	${\mathfrak C}$	20

Пункты 1-3 таблицы принимаются в соответствие с [Ошибка! Источник ссылки не найден.].

Градусо-сутки отопительного периода (ГСОП). Значение находится по формуле [Ошибка! Источник ссылки не найден.]:

$$\Gamma \text{CO}\Pi = (\mathbf{t}_{\text{B}} - \mathbf{t}_{\text{OT}}) * \mathbf{z}_{\text{OT}},$$

где $\mathbf{t}_{\mathtt{B}}$ — расчетная температура внутреннего воздуха для проектирования теплозащиты.

$$\Gamma$$
СОП = $(\mathbf{t}_{\text{в}} - \mathbf{t}_{\text{от}}) \cdot \mathbf{z}_{\text{от}} = (20 - (-2,5)) \cdot 190 = 4275$ град \cdot сут.

 Таблица 3

 Геометрические показатели здания

п/п	Показатель	Обозначение символа и единицы измерения показателя	Расчетное (проектное) значение показателя
1	Сумма площадей этажей здания	A_{ot} , M^2	2167,00
2	Площадь жилых помещений	A_{x} , M^2	1690,40
3	Отапливаемый объем	$\boldsymbol{V}_{\text{ot}},\mathbf{M}^3$	6600
4	Коэффициент остекленности фасада здания	f	0,075
5	Показатель компактности здания	Ккомп	0,56

6	Общая площадь наружных ограждающих конструкций здания, в т.ч.:	$A_{\rm H}^{\rm cym},{\rm M}^2$	3710,0
	фасадов	A _{φac} , M ²	2452,5
	окон и балконных дверей	A_{ok}, M^2	280,26
	входных дверей	A_{AB} , M^2	8,80
	чердаков	$A_{\text{черд}}, M^2$	968,23
7	Окон по сторонам света:		
	СВ		32,00
	C3		95,00
	ЮВ		112,00
	ЮЗ		32,00

Площадь входных дверей составляет 0,002% от суммарной площади ограждающих конструкций, поэтому данной величиной можно пренебречь в дальнейших расчетах.

Коэффициент остеклённости фасада здания:

$$f = \frac{280, 26}{3710, 0} = 0,075$$

Показатель компактности здания:

$$\mathrm{K_{KOM\Pi}} = \frac{3710,0}{6600} = 0,56$$

Таблица 4

Теплотехнические показатели

п/п	Показатель	Обозначение и единицы измерения	Нормируемое значение	Расчетное (проектное) значение
1	Приведенное сопротивление теплопередаче	R ⁰ _{пр} , м2 °С/Вт		

	наружных ограждений, в т.ч.:			
2	стен	$R_{\mathrm{пр,cr}}^0$	2,90	1,356
3	окон и балконных дверей	$R_{ m np,ok}^0$	0,47	0,39
4	входных дверей	$R_{\mathrm{пр,дв}}^0$		
5	перекрытий (совмещенных)	$R_{\mathrm{пр, nep}}^0$	3,82	4,72
6	чердаков	$R^0_{ m пр,черд}$	3,82	3,81

Нормируемые значения приведенных сопротивлений теплопередаче ограждающих конструкций считаются согласно СП 50.13330.2012 «Тепловая защита зданий», п. 5.3, таблицы 4 в зависимости от градусо-суток района строительства:

$$R_0^{\text{HOPM}} = a \cdot \Gamma CO\Pi + b$$
,

где *ГСОП* - градусо-сутки отопительного периода, °С·сут;

a, b - коэффициенты, значения которых следует принимать по данным СП 50.13330.2012 «Тепловая защита зданий», табл. 3 для соответствующих групп зданий, за исключением графы 6 для группы зданий в поз. 1, где для интервала до 6000 °C·сут: a = 0,000075, b = 0,15; для интервала 6000 - 8000 °C·сут: a = 0,00005, b = 0,3.

Расчетные значения определяются по формуле

$$R_0 = \frac{1}{\alpha_e} + \sum_i R_i + \frac{1}{\alpha_u}$$

где $\alpha_{\scriptscriptstyle e}$ - коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м².°С) по СП 50.13330.2012 «Тепловая защита зданий», таблица 4;

 $\alpha_{_{\it H}}$ - коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м².°С) по СП 50.13330.2012 «Тепловая защита зданий», таблица 6;

 R_i - термическое сопротивление слоя части фрагмента, (м².°С)/Вт, определяемое по формуле:

$$R_i = \frac{\delta_i}{\lambda_i},$$

где δ_i - толщина слоя, м; λ_i - теплопроводность материала слоя, $Bt/(M\cdot {}^{\circ}C)$.

Нормируемые значения $R_0^{\text{норм}}$ приведенных сопротивлений теплопередаче ограждающих конструкций считаются по формуле:

Для наружной стены: $\mathbf{R}_{\mathbf{0}}^{\text{норм}} = 4275*0,00035+1.4=2,90 \text{ м}^2 \cdot ^{\circ}\text{C/Bt}$

Для остекления: $R_0^{\text{норм}} = 4275*0,000075+0,15=0,47\text{м}^2 \cdot ^{\circ}\text{C/Bt}$

Для перекрытия: $R_0^{\text{норм}} = 4275*0,00045+1,9=3,82\text{м}^2 \cdot ^{\circ}\text{C/Bt}$

Для чердаков: $\mathbf{R}_{\mathbf{0}}^{\text{норм}} = 4275*0,00045+1,9=3,82\text{м}^2 \cdot ^{\circ}\text{C/Bt}$

Приведенные значения сопротивлений ограждающих конструкций $R_{\phi \text{акт}}$, $\text{м}^2 \cdot {}^{\circ}\text{C/BT}$:

1. Наружная стена

1 слой: Штукатурка цементно-песчаная

$$\delta_1 = 0.02 \text{ M}, \ \lambda_1 = 0.70 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C)};$$

2 слой: Кладка из глиняного обыкновенного кирпича на цементно-песчаном растворе

$$\delta_2 = 0.64 \text{ m}, \ \lambda_2 = 0.56 \text{ BT/ (m}^2 \cdot {}^{\circ}\text{C)};$$

3 слой: Штукатурка цементно-песчаная

$$\delta_3 = 0.02 \text{ M}, \ \lambda_3 = 0.70 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C)}$$

Сопротивление теплопередаче $R_{\text{факт}}$ определяется по формуле:

$$R_{\text{факт}} = 1/8,7 + 0.02/0,70 + 0.64/0,56 + 0.02/0,70 + 1/23 = 1,356 \text{ м}^2 \cdot {}^{\circ}\text{C}/\text{ Вт}$$

Как видно из расчёта $R_{\phi \text{акт}} < R_0^{\text{норм}}$ - следовательно, конструкция стены не соответствует требованиям норм.

2. Окна и балконные двери

Для заполнения проемов используются деревянные окна с двойным остеклением $R_{\rm ok}=0.38{\rm M}^2\cdot{}^{\rm o}{\rm C}/$ Вт $< R_0^{\rm Hopm}$

3. Перекрытие:

1 слой: Штукатурка цементно-песчаная

$$\delta_1 = 0.03 \text{ M}, \ \lambda_1 = 0.70 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C)};$$

2 слой: Железобетонные легкие балки

$$\delta_2 = 0.12 \text{ M}, \ \lambda_2 = 0.35 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C)};$$

3 слой: Прокаленный песок

$$\delta_3 = 0.02 \text{ M}, \ \lambda_3 = 1.5 \text{BT/ (M}^2 \cdot {}^{\circ}\text{C)};$$

4 слой: Воздушная прослойка

$$\delta_4 = 0.10 \text{ м}, \ \lambda_4 = 0.026 \text{ Bt/ (м}^2 \cdot {}^{\circ}\text{C)} \text{ при t} = 20 {}^{\circ}\text{C};$$

5 слой: Настил сплошной

$$\delta_5 = 0.04 \text{ M}, \ \lambda_5 = 0.21 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C)};$$

6 слой: Паркет штучный

$$\delta_6 = 0.02 \text{ M}, \ \lambda_6 = 0.23 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C}).$$

Сопротивление теплопередаче $R_{\phi \text{акт}}$ определяется по формуле:

$$R_{\phi \text{akt}} = 1/8,7 + 0.03/0,70 + 0.10/0,026 + 0.12/0,35 + 0.02/1,5 + 0.04/0,21 + 0.02/0,23 + 1/23 =$$

$$= 4.72 \text{ m}^2 \cdot \text{°C/BT}$$

Как видно из расчёта $R_{\phi \text{акт}} > R_0^{\text{норм}}$ - следовательно, конструкция перекрытия соответствует требованиям норм.

4. Чердачные перекрытия:

1 слой: Штукатурка цементно-песчаная

$$\delta_1 = 0.03 \text{ M}, \ \lambda_1 = 0.70 \text{ BT/(M}^2 \cdot {}^{\circ}\text{C});$$

2 слой: Железобетонные легкие балки

$$\boldsymbol{\delta_2} = 0.12 \text{ m}, \ \boldsymbol{\lambda_2} = 0.35 \text{ BT/ (m}^2 \cdot {}^{\circ}\text{C)};$$

3 слой: Прокаленный песок

$$\delta_3 = 0.02 \text{ M}, \ \lambda_3 = 1.5 \text{ BT/ (M}^2 \cdot {}^{\circ}\text{C)};$$

4 слой: Воздушная прослойка

$${m \delta_4} = 0.05 \; {
m M}, \;\; {m \lambda_4} = 0.026 \; {
m Bt/} \; ({
m M}^2 \cdot {
m ^oC}) \; {
m при} \; t = 20 {
m ^oC};$$

5 слой: Фибролитовые панели

$$\delta_5 = 0.07 \text{ M}, \ \lambda_5 = 0.07 \text{BT/ (M}^2 \cdot {}^{\circ}\text{C)};$$

6 слой: Ходовой настил

$$\delta_6 = 0.04 \text{ m}, \ \lambda_6 = 0.13 \text{BT/ (M}^2 \cdot {}^{\circ}\text{C}).$$

Сопротивление теплопередаче $\mathbf{\textit{R}}_{\phi \text{akt}}$ определяется по формуле:

$$R_{\phi akt} = 1/8,7+0,03/0,70+0,12/0,36+0,02/1,5+0,05/0,026+0,07/0,07+0,04/0,13+1/23=3,81 \text{m}^2 \cdot {}^{\circ}\text{C/Bt}$$

Как видно из расчёта $R_{\phi \text{акт}} < R_0^{\text{норм}}$ - следовательно, конструкция чердачного перекрытия не соответствует требованиям норм.

Таблица 5
Вспомогательные показатели

п/п	Показатель	Обозначение и единицы измерения	Расчетное проектное значение показателя
1	Общий показатель теплопередачи здания	К _{общ} , Вт/(м².°С)	0,74
2	Средняя кратность воздухообмена здания за отопительный период при удельной норме воздухообмена	$\mathbf{n}_{\mathtt{B}},\mathtt{Y}^{ ext{-}1}$	1,13
3	Удельные бытовые тепловыделения в здании	$q_{\text{быт}}$, Вт/м2	15

В соответствии с формулами, рассмотренными в данных методических указаниях найдем общий коэффициент теплопередачи здания и среднюю кратность воздухообмена здания за отопительный период при удельной норме воздухообмена:

$$\begin{split} \text{K}_{\text{общ}} &= \frac{1}{3710,0} * 1 * \left(\frac{2452,5}{1,37} + \frac{280,26}{0,39} + \frac{968,23}{3,81} \right) = 0,74 \\ \\ n_{\text{B}} &= \frac{\frac{3*1690,40*168}{168} + \frac{0,3*0,85*6600*168}{168*1,30}}{0,85*6600} = 1,13 \end{split}$$

 Таблица 6

 Удельные характеристики здания

п/п	Показатель	Обозначение и единицы измерения	Расчетное проектное значение показателя
1	Удельная теплозащитная характеристика здания	k ₀б, (Вт/м³ * °С),	0,42
2	Удельная вентиляционная характеристика здания	$\mathbf{k}_{\text{вент}}$, (Вт/м ³ * °C),	0,21
3	Удельная характеристика бытовых тепловыделений здания	$k_{\text{быт}}$, (Вт/м 3 * °С),	0,17
4	Удельная характеристика теплопоступлений в здание от солнечной радиации	k _{рад} , (Вт/м³ * °С),	0,032

В соответствии с формулами, рассмотренными в данных методических указаниях имеем:

$$egin{align*} k_{ ext{of}} = 0.56*0.74 = 0.42 \ k_{ ext{Beht}} = 0.28*1*1.13*0.85*1.30(1-0.4) = 0.21 \ k_{ ext{filt}} = rac{15*1690.40}{6600*(20-(-2.5))} = 0.17 \ k_{ ext{pag}} = rac{11.6*77502.05}{6600*4275} = 0.032 \ \end{aligned}$$

$$\begin{aligned} Q_{\text{рад}}^{\text{год}} &= 0,68*0,8*(32,0*141+112,0*865+32,0*865+95,0*141) \\ &= 0,68*0,8*(4512+96880+27680+13395) = 77502,05 \end{aligned}$$

 Таблица 7

 Коэффициенты и комплексные показатели

п/п	Показатель	Обозначение	Нормативное значение показателя
1	Коэффициент эффективности авторегулирования отопления	ζ	0,7
2	Коэффициент, учитывающий снижение теплопотребления жилых зданий при наличии поквартирного учета тепловой энергии на отопление	ہک	0,1
3	Коэффициент эффективности рекуператора	Кэф	0,4
4	Коэффициент, учитывающий снижение использования теплопоступлений в период повышения их над теплопотерями	υ	0,78
5	Коэффициент учета дополнительных теплопотерь системы отопления	$\boldsymbol{\beta}_h$	1,07

 $[\]zeta$ - Коэффициент эффективности авторегулирования подачи теплоты в системах отопления, рекомендуемые значения:

 $[\]zeta = 0,7$ - в системе без термостатов и с центральным авторегулированием на вводе с коррекцией по температуре внутреннего воздуха;

- $\zeta=0.5$ в системе без термостатов и без авторегулирования на вводе регулирование центральное в центральном тепловом пункте (ЦТП) или котельной.
- ξ коэффициент, учитывающий снижение теплопотребления жилых зданий при наличии поквартирного учета тепловой энергии на отопление, принимается до получения статистических данных фактического снижения $\xi = 0.1$;
 - Кэф Коэффициент эффективности рекуператора;
- υ коэффициент снижения теплопоступлений в период превышения их над теплопотерямизасчет тепловой инерции ограждающих конструкций определяется по приложению Γ по СП 50.13330.2012 «Тепловая защита зданий»:

$$v = 0.7 + 0.000025(\Gamma \text{CO}\Pi - 1000)$$

$$\upsilon = 0.7 + 0.000025(2475 - 1000) = 0.78$$

- β_h коэффициент учета дополнительных теплопотерь системы отопления, связанное с дискретностью номинального теплового потока номенклатурного ряда отопительных приборов, их дополнительными теплопотерями через зарадиаторные участки ограждений, повышенной температурой воздуха в угловых помещениях, теплопотерями трубопроводов, проходящих через неотапливаемые помещения для:
 - многосекционных и других протяженных зданий β_h =1,13;
 - зданий башенного типа β_h =1,11;
 - зданий с отапливаемыми подвалами или чердаками β_h =1,07;
- зданий с отапливаемыми подвалами и чердаками, а также с квартирными генераторами теплоты β_n =1,05.

Таблица 8 Комплексные показатели расходов тепловой энергии

п/п	Показатель	Обозначение	Значение показателя
2	Расчетная удельная характеристика расхода тепловой энергии на	$oldsymbol{q}_{ exttt{p}}^{ exttt{ott}}, exttt{Bt/(м3 · °C)}$	0,50

	отопление и вентиляцию здании за отопительный период		
4	Нормируемая удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий	$oldsymbol{q}_{ ext{ot}}^{ ext{тp}}, ext{Вт/(м3}\cdot ext{°C)}$	0,372
5	Класс энергосбережения	D	
	Соответствует ли проект здания нормативному требованию по теплозащите	нет	

 $q_{\rm p}^{\rm or}$ — расчетная удельная характеристика расхода тепловой энергии на отопление и вентиляцию зданий за отопительный период [Ошибка! Источник ссылки не найден.]:

$$\boldsymbol{q}_{\mathrm{p}}^{\mathrm{ot}} = (\boldsymbol{k}_{\mathrm{of}} + \boldsymbol{k}_{\mathrm{Beht}} - (\boldsymbol{k}_{\mathrm{быт}} + \boldsymbol{k}_{\mathrm{рад}})^* \, \upsilon \, \zeta \,) (1 - \xi) \, \boldsymbol{\beta}_{\boldsymbol{h}}$$

$$\boldsymbol{q}_{\mathrm{p}}^{\mathrm{ot}} = (0.42 + 0.21 - (0.17 + 0.032)^* \, 0.78 * 0.7 \,) (1 - 0.1)^* 1.07 = 0.50 \, \mathrm{Bt} / (\mathrm{M3} \cdot \mathrm{^{\circ}C})$$

Класс энергоэффективности определяется по величине отклонения расчетной удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания от нормируемой. Класс энергосбережения определяется по формуле:

$$(\boldsymbol{q}_{p}^{ot}-\boldsymbol{q}_{ot}^{tp})/\boldsymbol{q}_{ot}^{tp}*100\%$$

$$(0.50-0.372/0.372)*100\% = +34\%$$

Согласно таблице 10, класс энергоэффективности объекта D – пониженный.

В данном случае рекомендуется проведения реконструкции здания при соответствующем экономическом обосновании.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. СП 50.13330.2012 «Тепловая защита зданий»;
- 2. СП 55.13330.2016 «Дома жилые одноквартирные»;
- 3. СП 131.13330.2020 «Строительная климатология»;
- 4. ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях»;
- 5. СП 23-101-2004 «Проектирование тепловой защиты зданий».

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	. 3
	. 3
. ЭНЕРГОЭФФЕКТИВНОСТЬ ЗДАНИЙ И СООРУЖЕНИЙ	. 4
.1 Общая информация о здании	. 5
.2 Расчетные условия функционирования здания	6
.3 Геометрические показатели здания	. 7
.4 Теплотехнические показатели	. 8
.5 Вспомогательные показатели	10
.6 Удельные характеристики здания1	12
.7 Коэффициенты и комплексные показатели	13
Триложение 1. ПРИМЕР РАСЧЕТА энергоэффективности жилого здания 1	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК2	29

РАСЧЕТ ЭНЕРГОЭФФЕКТИВНОСТИ ЖИЛОГО ЗДАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению практических и самостоятельных работ по дисциплине «Энергосбережение в городском хозяйстве»

для студентов направления 08.02.01 «Строительство и эксплуатация зданий и сооружений»

всех форм обучения

Составители: Севрюкова Кристина Сергеевна

Компьютерный набор К.С. Севрюкова

Подписано к изданию .

<mark>Уч.-изд. л. .</mark>

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14