МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Декан факультета Драпалюк Н.А. «31» августа 2018г.

РАБОЧАЯПРОГРАММА

дисциплины

«Теоретическая механика»

Направление подготовки 20.03.01 ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ

Профиль Безопасность жизнедеятельности в техносфере

Квалификация выпускника бакалавр

Нормативный период обучения 4 года /4 года и 11 м.

Форма обучения очная / заочная

Год начала подготовки 2018

Автор программы /Ю.Б. Рукин/

Заведующий кафедрой прикладной математики и

механики

/В.И. Ряжских/

Руководитель ОПОП

_/А.А. Павленко/

Воронеж 2018

1.ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1.Цели дисциплины «Теоретическая механика» является: изучение фундаментальных понятий механики как науки о движении и равновесии материальных тел.

Изучение дисциплины должно способствовать формированию у студентов основ научного мышления, в результате изучения студенты должны иметь представление об истории и тенденциях развития, взаимосвязи теоретической механики с другими областями знаний, о роли и месте механики в современной технике.

1.2.Задачи освоения дисциплины

Задачи

ознакомление студентов с основными понятиями и законами механики (статики, кинематики, динамики) и вытекающими из этих законов методами изучения равновесия и движения материальной точки, твердого тела и механической системы;

рационального выбора расчетных моделей механических систем в конкретной предметной области.

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теоретическая механика» относится к дисциплинам базовой части блока Б1.

З.ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теоретическая механика» направлен на формирование следующих компетенций:

ОК-11-способностью к абстрактному и критическому мышлению, исследованию окружающей среды для выявления ее возможностей и ресурсов, способностью к принятию нестандартных решений и разрешению проблемных ситуаций

Компетенция	Результаты обучения, характеризующие сформированность компетенции
OK-11	Знать: дифференциальные уравнения движения точки относительно инерциальной и неинерциальной системы координат; теоремы об изменении кинетической энергии механической системы;
	Уметь использовать полученные знания для решения конкретных задач механики;
	Владеть навыками самостоятельной работы, практического использования методов теоретической механики для решения задач в области механики, в том числе с применением ЭВМ.

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теоретическая механика» составляет 53.е.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Developera in notice and active	Всего	Сем	естры
Виды учебной работы	часов	2	3
Аудиторные занятия (всего)	72	36	36
В том числе:			
Лекции	36	18	18
Практические занятия (ПЗ)	36	18	18
Самостоятельная работа	81	36	45
Часы на контроль	27	-	27
Виды промежуточной аттестации -	+	+	+
экзамен, зачет	Т	Т	Т
Общая трудоемкость:			
академические часы	180	72	108
зач.ед.	5	2	3

Заочная форма обучения

Duran various in actions	Всего	Семестры		
Виды учебной работы	часов	2	3	
Аудиторные занятия (всего)	16	8	8	
В том числе:				
Лекции	8	4	4	
Практические занятия (ПЗ)	8	4	4	
Самостоятельная работа	151	60	91	
Часы на контроль	13	4	9	
Виды промежуточной аттестации - экзамен, зачет	+	+	+	
Общая трудоемкость: академические часы зач.ед.	0 5	72 2	108 3	

5.СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

№ п/п	Наименование темы	Содержание раздела		Прак зан.	CPC	Всего, час
1	Статика твердого тела	Аксиомы статики. Связи и их реакции. Уравнения равновесия плоской системы сил.		6	12	24
2	Статика твердого тела	Уравнения равновесия пространственной системы.	6	6	14	26
3	Кинематика	Способы задания движения материальной	6	6	14	26

	материальной точки и	точки. Скорости и ускорения движения				
	твердого тела	точки Определение скоростей точек с				
		использованием понятия мгновенного				
		центра скоростей				
4	Динамика	Задачи динамики. Аксиомы динамики.				
	материальной точки и	Дифференциальные уравнения движения	6	6	14	26
	твердого тела	материальной точки				
5	Динамика	Исследование относительного движения				
	материальной точки и	материальной точки.	6	6	14	26
	твердого тела					
6	Динамика системы	Теорема об изменении кинетической				
	материальных тел	энергии при изучении движения	6 6		13	25
		механической системы				
	·	Итого	36	36	81	153

Заочная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	СРС	Всего, час
1	Статика твердого тела	Аксиомы статики. Связи и их реакции. Уравнения равновесия плоской системы сил.		-	24	26
2	Кинематика материальной точки и твердого тела	Способы задания движения материальной точки. Скорости и ускорения движения точки	2	-	24	26
3	Динамика материальной точки и твердого тела	Исследование относительного движения материальной точки.	2	2	26	30
4	Динамика материальной точки и твердого тела	Теорема об изменении кинетической энергии при изучении движения механической системы	2	2	26	30
5	Динамика материальной точки и твердого тела	Исследование относительного движения материальной точки.	-	2	26	28
6	Динамика материальной точки и твердого тела	Теорема об изменении кинетической энергии при изучении движения механической системы	-	2	25	27
		Итого	8	8	151	167

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«неаттестован».

Компе- тенция	Результаты обучения, характеризующие, сформированность компетениии	Критерии оценивания	Аттестован	Неаттестован
------------------	---	------------------------	------------	--------------

OK-11	Знать: дифференциальные уравнения движения точки относительно инерциальной и неинерциальной системы координат; теоремы об изменении кинетической энергии механической системы;	Тест	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь использовать полученные знания для решения конкретных задач механики;	Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками самостоятельной работы, практического использования методов теоретической механики для решения задач в области механики, в том числе с применением ЭВМ.	Решение прикладных задач в конкретной предметной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 2,3 семестре для очной формы обучения, 2,3 семестре для заочной формы обучения по двух/четырех балльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Незачтено
ОК-11	Знать: дифференциальные уравнения движения точки относительно инерциальной и неинерциальной системы координат; теоремы об изменении кинетической энергии механической системы;	Тест	Выполнение теста на 70-100%	Выполнениеменее 70%
	Уметь использовать полученные	Решение стандартных практических задач	Продемонстрировать верный ход решения в большинстве задач	Задачи не решены

знания д решения конкрети задач ме	I НЫХ			
самостом работы, практиче использом методов теоретич механик решения области том числ	ятельной еского ования неской и для и задач в механики, в	Решение прикладных задач в конкретной предметной области	Продемонстрировать верный ход решения в большинстве задач	Задачи не решены

ИЛИ

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оцениван ия	Отлично	Хорошо	Удовл.	Неудовл.
OK-11	Знать: дифференциальные уравнения движения точки относительно инерциальной и неинерциальной системы координат; теоремы об изменении кинетической энергии механической системы;	Тест	Выполнен ие теста на 90- 100%	Выполнение теста на 80- 90%	Выпол нение теста на 70- 80%	В тесте менее 70% правильн ых ответов
	Уметь использовать полученные знания для решения конкретных задач механики;	Решение стандартн ых практическ их задач	Задачи решены в полном объеме и получены верные ответы	Продемонстриро ван верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстриро ван верный ход решения в большинстве задач	Задачи не решены
	Владеть навыками самостоятельной работы, практического использования	Решение прикладны х задач в конкретно й предметно	Задачи решены в полном объеме и получены верные	Продемонстриро ван верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстриро ван верный ход решения в большинстве задач	Задачи не решены

методов	й области	ответы		
теоретической				
механики для				
решения задач в				
области механики,				
в том числе с				
применением ЭВМ.				

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

- 1. Теоретическая механика изучает...
 - а) движение тел под действием сил
 - б) равновесие твердых тел
 - в) статику, кинематику и динамику материальных точек и твердых тел
- 2. В теоретической механике принято считать тела....
- а) линейно-деформируемыми
- б) абсолютно твердыми
- в) реальными
- 2. Кривошипом называется звено, совершающее...
- а) поступательное движение
- б) плоское движение
- в) вращательное движение
- 3. Главный вектор это
- а) самый большой по модулю вектор
- б) сумма модулей всех векторов системы
- в) векторная сумма всех векторов системы
- 4. Равнодействующая системы сил сила,
- а) равная сумме модулей всех сил системы
- б) производящая на тело такой же механический эффект, как и система сил
 - в) уравновешивающая данную систему сил
 - 5. Сила есть величина
 - а) векторная
 - б) скалярная
 - в) постоянная
 - 6. Уравнения равновесия для плоской системы сходящихся сил

- а) состоят из двух сумм проекций сил на оси системы координат
- б) состоят из суммы проекций сил на оси системы координат и суммы моментов относительно любой моментной точки
 - в) состоят их сумм моментов относительно двух моментных точек
 - 7. Уравнения равновесия записываются для
 - а) свободных тел
 - б) несвободных тел
 - в) связей
 - 8. Главный момент это ...
 - а) самый большой по модулю момент системы сил
 - б) векторная сумма моментов сил системы
 - в) сумма модулей моментов сил системы
 - 9. Реакция абсолютно гладкой поверхности направлена..
 - а) по нормали к поверхности опирания
 - б) по касательной к поверхности опирания
 - в) под углом 45 градусов к поверхности опирания
 - 10. Для произвольной плоской системы сил нужно составить ...
- а) два уравнения равновесия в виде сумм проекций сил на оси системы координат
- б) два уравнения в виде проекций сил на оси системы координат и суммы моментов сил относительно моментной точки
- в) уравнения в виде сумм моментов сил относительно двух моментных точек

7.2.2 Примерный перечень заданий для решения стандартных задач

ТИПОВОЕ ЗАДАНИЕ № 1.

ОПРЕДЕЛЕНИЕ РЕАКЦИЙ СВЯЗЕЙ СОСТАВНОЙ КОНСТРУКЦИИ

Рассматривается плоская конструкция, находящаяся в равновесии под действием заданных сил и наложенных связей (рис.1–3). Элементы конструкции считаются абсолютно жесткими. Стержни, изображенные сплошными линиями, невесомые. Трение в шарнирах, катках и точках контакта тел отсутствует.

Числовые значения задаются формулами и таблица 1:

$$F=F_T+0.1n;$$
 $G_I=G_{IT}+0.1N;$ $G_2=G_{2T}+0.1N;$ $\sin\alpha_I=(\sin\alpha_I)_T+10^{-3}n;$ $\sin\alpha_j=(\sin\alpha_j)_T-10^{-3}N$ $(j=2,3,4)$

При задании числовых значений параметров индекс «T» означает, что исходное значение данной величины берётся из нижеследующей таблицы 1 и преобразуется по указанным формулам. Значения параметров N и n задаются

преподавателем. Силы в таблице 1 заданы в кН.

Требуется определить реакции шарнирно-неподвижной опоры O и шарнирно-подвижной опоры K, усилия в невесомых стержнях, давление в точке D.

Таблица 1

Вариант	F_T	G_{IT}	G_{2T}	$(\sin \alpha_l)_T$	$(\sin \alpha_2)_T$	$(\sin \alpha_3)_T$	$(\sin \alpha_4)_T$			
1	2	3	4	5	6	7	8			
1	10	10	10	0.20	0.13	0.68	0.88			
2	10	20	10	0.82	0.15	0.77	_			
3	30	10	20	0.30	0.64	0.54	0.70			
4	10	10	10	0.26	0.22	0.70	0.90			
5	5	40	40	0.30	0.30	0.85	0.90			
	Продолжение таблицы 1									
1	2	3	4	5	6	7	8			
6	5	40	10	0.24	0.30	0.50	0.64			
7	20	20	10	0.30	0.90	0.47	_			
8	40	10	10	0.70	0.26	0.53	0.57			
9	5	50	10	0.17	0.22	0.64	0.34			
10	10	10	10	0.47	0.30	0.70	0.50			
11	7	10	10	0.22	0.10	0.34	0.90			
12	10	10	30	0.30	0.42	0.50	_			
13	15	10	10	0.34	0.64	0.34	0.47			
14	20	10	20	0.42	0.22	0.77	0.62			
15	20	10	10	0.20	0.70	0.77	0.94			
16	10	10	10	0.34	0.50	0.90	_			

17	10	20	10	0.25	0.34	0.88	0.94
18	10	30	10	0.20	0.94	0.80	_
19	10	20	10	0.25	0.25	0.77	0.94
20	10	10	20	0.40	0.30	0.94	0.90
21	10	10	20	0.60	0.85	0.90	_
22	15	20	20	0.30	0.24	0.93	0.77
23	10	20	10	0.20	0.90	0.77	0.26
24	10	30	10	0.30	0.34	0.64	0.85
25	10	20	10	0.35	0.40	0.60	0.94
26	5	40	20	0.34	0.90	0.70	_
27	10	10	10	0.30	0.30	0.90	0.85
28	10	20	10	0.34	0.40	0.50	_
29	10	20	10	0.35	0.30	0.60	0.70
30	10	10	20	0.40	0.30	0.80	0.90

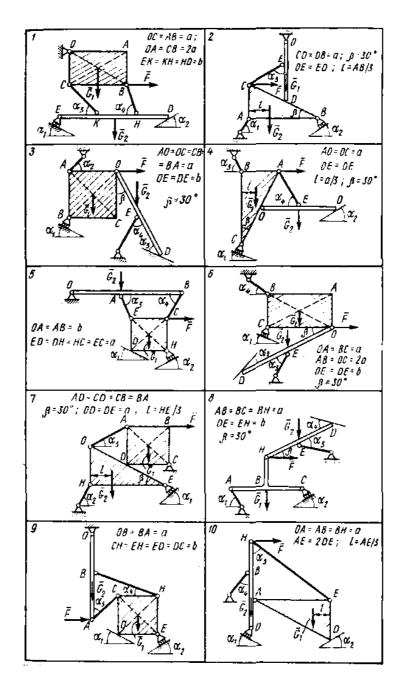


Рис. 1

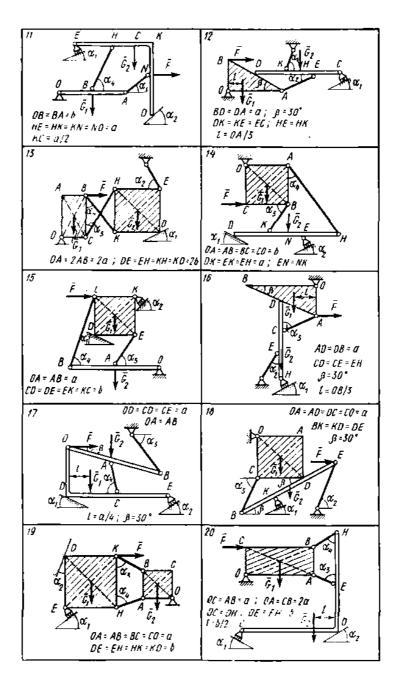


Рис. 2

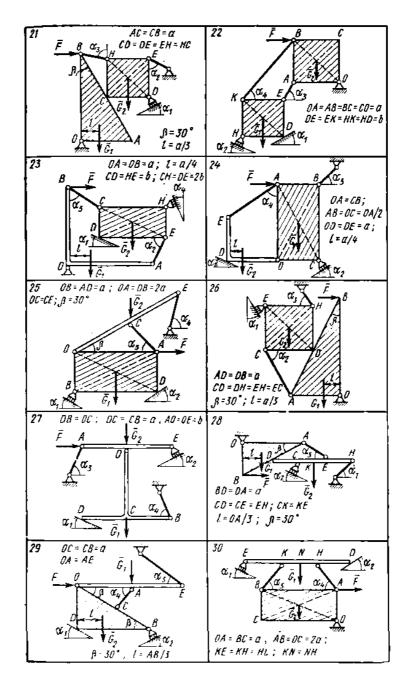


Рис. 3

ТИПОВОЕ ЗАДАНИЕ № 2.

ИССЛЕДОВАНИЕ ОТНОСИТЕЛЬНОГО ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ

Шарик M, рассматриваемый как материальная точка, перемещается по цилиндрическому каналу движущегося тела A (рис. 4–6). Найти уравнение относительного движения этого шарика x=f(t), приняв за начало отсчета точку O.

Тело A равномерно вращается вокруг неподвижной оси (в вариантах 2, 3, 4, 7, 10, 11, 14, 20, 23, 26, 30 ось вращения z_I вертикальна, в вариантах 1, 12, 15, 25 ось вращения x_I горизонтальна). В вариантах 5, 6, 8, 9, 13, 16, 17, 18, 19, 21, 22, 24, 27, 28, 29 тело A движется поступательно,

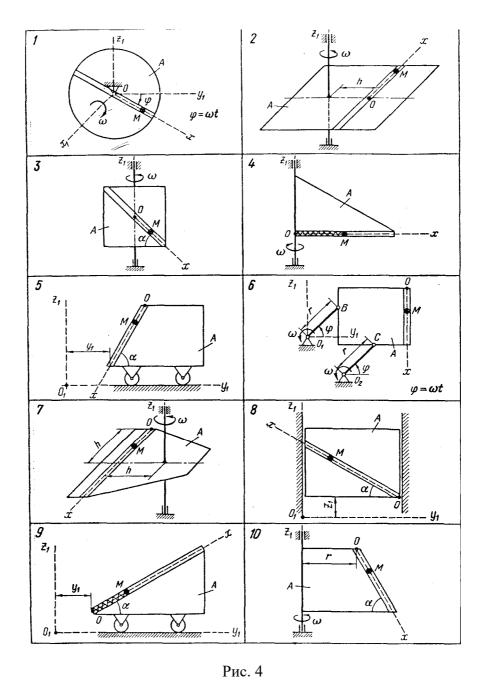
параллельно вертикальной плоскости $y_1O_1z_1$.

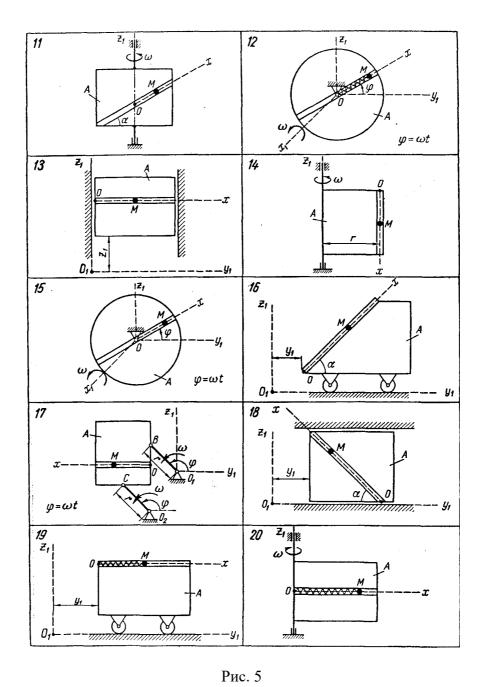
Найти также координату x и давление шарика на стенку канала при заданном значении $t=t_1$. Данные, необходимые для выполнения задания, приведены в таблице 2. Номер варианта в таблице 2 соответствует номеру схемы на рис. 4—6.

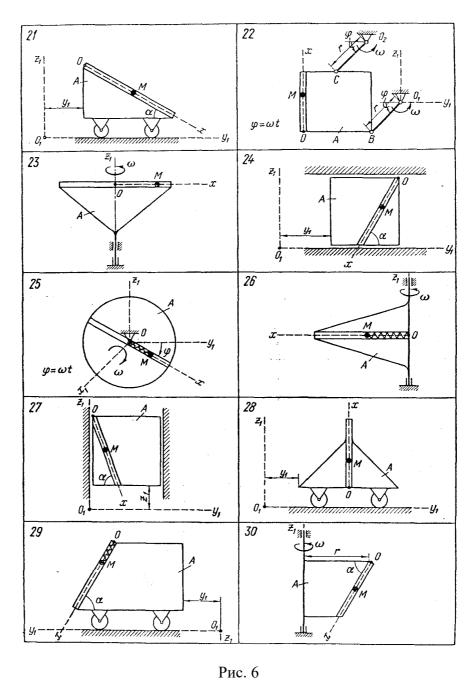
В задании приняты следующие обозначения:

m — масса шарика M;

 ω – постоянная угловая скорость тела A (в вариантах 1-4, 7, 10-12, 14,15, 20,23,25,26,30) или кривошипов O_1B и O_2C (в вариантах 6, 17, 22);


c – коэффициент жесткости пружины, к которой прикреплен шарик M;


 l_0 – длина недеформированной пружины;


f – коэффициент трения скольжения шарика по стенке канала;

 x_0 — начальная координата;

 $x_{0}^{'}$ — проекция начальной скорости на ось x.

<u>Таб</u>лица 2

Вариант	α , pad	т, кг	ω , pad/c	Начал данг <i>х</i> ₀ , <i>м</i>		t_{I},c	с, Н/см	l_0, M	Уравнение движения тела <i>А</i> , (м)	rh, м	f	
1	_	0,02	π	0	0,4	0,5	_	_	_	_	0	
2	_	0,02	π	0	0,2	0,4	_	_	_	0,15	0	
3	45	0,03	2π	0,5	0	0,2	_	_	_	_	0	
4	_	0,09	4π	0,2	-0,8	0,1	0,36	0,15	_	_	0	

5	60	0,02	_	0,6	0	0,2	_	_	$y_1 = 0.6 - 2t^3$	_	0
6	_	0,01	10π	0,5	0	0,2	_	_	_	0,10	0
7	_	0,03	2π	0,3	0	0,2	_	_	_	0,20	0
8	30	0,03	_	0,8	0	0,1	_	_	$z_1 = 0.1\cos 2\pi t$	_	0
9	30	0,02	_	0,4	0	0,1	0,20	0,20	$y_1 = 4t^3$	_	0
10	60	0,05	6π	0,4	0	0,1	_	_	_	0,20	0
11	30	0,05	π	0	0	0,4	_	_	_	_	0
12	_	0,08	6π	0,05	0	0,1	0,20	0,10	_	_	0
13	_	0,01	_	0	0,5	0,2	_	_	$z_1 = 5 - 10t^2$	_	0,1
14	_	0,05	4π	0,5	0	0,1	_	_	_	0,20	0,2
15	_	0,01	π	0,5	0	1,0	_	_	_	_	0
16	45	0,02	_	1,0	2,0	0,1	_	_	$y_1 = 0.06t^3$	_	0
17	_	0,02	6π	0	4,0	0,2	_	_	_	0,20	0
18	40	0,02	_	0,6	0	0,1	_	_	$y_1 = 0,1 \sin \pi t$	_	0
19	_	0,08	_	0,4	-0,8	0,1	0,40	0,20	$y_1 = 8t - t^3$	_	0
20	_	0,01	10π	0,1	0	0,2	0,20	0,10	_	_	0
21	30	0,05	_	0,5	0,1	0,1	_	_	$y_1 = 2 + t^2$	_	0,2
22	_	0,03	4π	0,1	3,0	0,1	_	_	_	0,10	0
23	_	0,01	2π	-0,5	-0,1	0,2	_	_	_	_	0
24	60	0,01	_	0	0,2	0,2	_	_	$y_1=0,1\cos 1,5\pi t$	_	0
25	_	0,05	2π	0,1	-0,4	0,1	0,20	0,20	_	_	0
26	_	0,09	π	0,2	0,3	0,1	0,20	0,1	_	_	0
27	75	0,02	_	1,0	0,6	0,3	_	_	$z_1=0,1sin0,5\pi t$	_	0
28	_	0,03	_	0,8	0	0,3	_	_	$y_1 = 8 - 5t^3$	_	0,1

ТИПОВО ЗАДАНИЕ № 3.

ПРИМЕНЕНИЕ ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ К ИЗУЧЕНИЮ ДВИЖЕНИЯ МЕХАНИЧЕСКОЙ СИСТЕМЫ

Под действием сил тяжести механическая система приходит в движение из состояния покоя. Начальное положение системы показано на рис. 7–9.

Учитывая трение скольжения тела 1 (варианты 1–3, 5, 6, 8–12, 17–23, 28–30) и сопротивление качению тела 3, катящегося без скольжения (варианты 2, 4, 6–9, 11, 13–15, 20, 21, 24, 27, 29), пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный путь станет равным *s*.

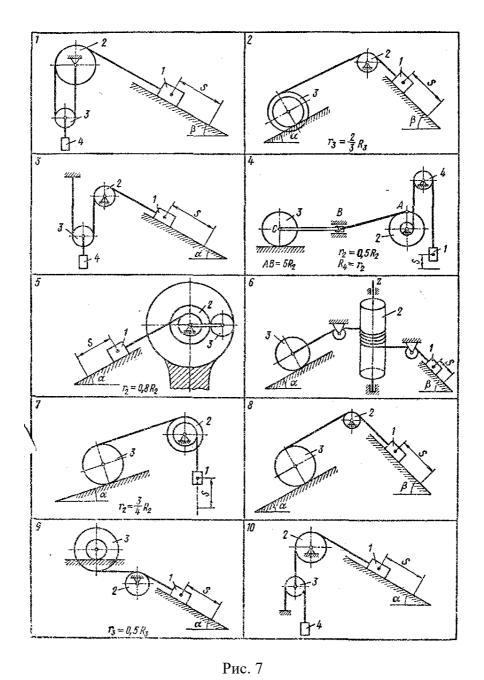
В задании приняты следующие обозначения:

 m_1 , m_2 , m_3 , m_4 – массы тел 1, 2, 3, 4;

 R_2 , r_2 , R_3 , r_3 – радиусы больших и малых окружностей;

 i_{2x} , $i_{3\xi}$ — радиусы инерции тел 2 и 3 относительно горизонтальных осей, проходящих через их центры тяжести;

 α , β – углы наклона плоскостей к горизонту;


f – коэффициент трения скольжения;

 δ – коэффициент трения качения.

Необходимые для расчёта данные приведены в таблице 3. Блоки и катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.

Наклонные участки нитей параллельны соответствующим наклонным плоскостям.

Номер варианта в таблице 3 соответствует номеру схемы на рис. 7–9.

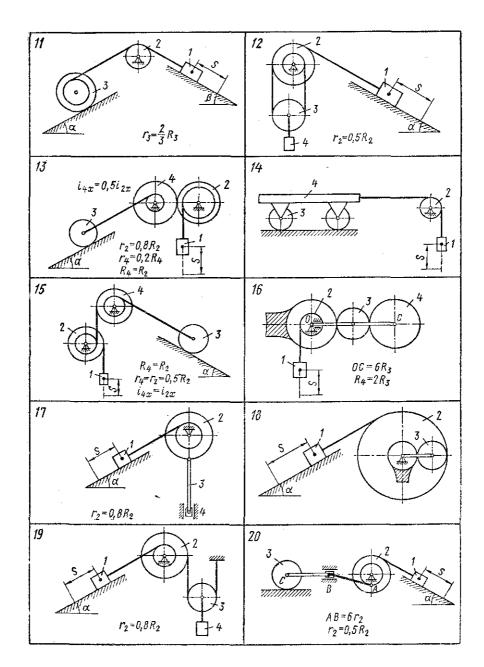


Рис. 8

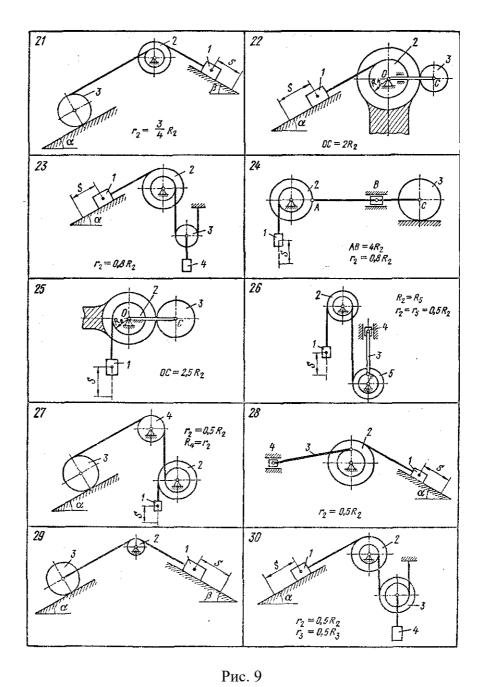


Таблица 3

тант	m_1	m_2	m_3	m_4	R_2	R_3	i_{2x}	$i_2\xi$	α	β	f	δ,	s,
Вариант			кг		C.	М	C.	М	гр	ад		СМ	М
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	m	4 <i>m</i>	$^{1}/_{5}m$	$^{4}/_{3}m$	_	_	_		60	_	0,10	_	2
2	m	$^{1}/_{2}m$	$^{1}/_{3}m$	_	_	30	_	20	30	45	0,22	0,20	2
3	m	m	$^{1}/_{10}m$	m	_	_	_	1	45	_	0,10	_	2
4	m	2 <i>m</i>	40m	m	20	40	18	_	_	_	_	0,30	0,1π

		N	l acca	ми зв	еньев	AB	8, B	C и	пс	лзу	/на	В пр	енеб	речь
	5	m	2 <i>m</i>	m	_	20	15	18	_	60	_	0,12	_	$0,28\pi$
	3		I	N	n Macco	і ой в	оді	ила	пр	ене	бре	ечь		l
	6	m	3 <i>m</i>	m	_	_	28	_	_	30	45	0,10	0,28	1,5
	7	m	2 <i>m</i>	2 <i>m</i>	_	16	25	14	_	30	_	_	0,20	1,5 2 1,75
	8	m	$^{1}/_{2}m$	$^{1}/_{3}m$	_	_	30	_	_	30	45	0,15	0,20	1,75
	9	m	2 <i>m</i>	9 <i>m</i>	_	_	30	_	20	30	_	0,12	0,25	1,5
	10	m	$^{1}/_{4}m$	$^{1}/_{4}m$	$^{1}/_{5}m$	_		_	_	60	_	0,10	_	3
	11	m	$^{1}/_{2}m$	$^{1}/_{4}m$	_	_	30		25	30	45	0,17	0,20	2,5
	12	m	$^{1}/_{2}m$	$^{1}/_{5}m$	m	30		20	_	30		0,20	_	2,5
	13	m	2 <i>m</i>	5 <i>m</i>	2 <i>m</i>	30	20	26	_	30		_	0,24	2
	14	m	$^{1}/_{2}m$	5 <i>m</i>	4 <i>m</i>	_	25	-	_	_	-	_	0,20	2 2
	14		Mac	ы Сы ка	і ждого	I О ИЗ	в че	ты]	pex	КО	лес	оди:	і накоі	ВЫ
	15	m	$^{1}/_{2}m$	4 <i>m</i>	$^{1}/_{2}m$	20	15	18	_	60	_	_	0,25	1,5
	16	m	$^{1}/_{10}m$	$^{1}/_{20}m$	$^{1}/_{10}m$	10	12	-	_	_	-	_	_	$0,05\pi$
	10			•	l Macco									
_										-				лицы 3
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
		m	$^{1}/_{4}m$	$^{1}/_{5}m$	$^{1}/_{10}m$	20	-	15	_	60	1	0,10	_	14 0,16π ный
	17	I	Шату	н <i>3</i> ра	ссмат						кий	одн	ороді	ный
			Ī	Ī	Ī		сте]				Í	İ	Ī	1
	18	m	3 <i>m</i>	m	_	35	15	32	_	60	-	0,15	_	$0,2\pi$
					Лассо				_		_			
	19	m	$^{1}/_{3}m$	$^{1}/_{10}m$	m	24	_	20	_	60	_	0,15	_	1,5
	20	m	2 <i>m</i>	20 <i>m</i>	_	20	15	16	_	30	_	0,10	0,20	1,5 0,2π бречь
		M	laccar	ии зве	еньев	AB	, B	Си	ПО	лзу	' на	Впр	енеб	речь
		1												

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Сколько уравнений равновесия необходимо составить для плоской системы сходящихся сил?
 - а) три
 - б) шесть
 - в) два
 - 2. Чему равен момент силы (ее модуль 10 н), параллельной оси, относительно этой оси?
 - а) 10 нм

- б) 0 нм
- в) -10нм
- 3. Необходимо, ли составлять для плоской системы сходящихся сил уравнение в виде суммы моментов сил относительно любой моментной точки?
- а) да
- б) нет
- в) бессмысленно
- 4. Реакция шарнирно-подвижной опоры направлена..
- а) по касательной к направлению перемещения
- б) по нормали к направлению перемещения
- в) под углом 45 градусов к направлению перемещения
- 5. Реакция гибкой связи направлена...
- а) по линии связи к точке подвеса
- б) по линии связи от точки подвеса
- в) перпендикулярно к линии связи
- 6. Можно, ли доказать, что сила скользящий вектор?
- а) да, на основании аксиомы статики
- б) нет
- в) да, без аксиомы статики
- 7. Сколько уравнений равновесия необходимо составить для произвольной пространственной системы сил?
- а) три уравнения в виде сумм проекций сил на оси системы координат
- б) три уравнения в виде сумм проекций сил на оси системы координат и двух уравнений в виде сумм моментов сил относительно осей
- в) шесть уравнений
- 8. Сила трения покою направлена...
- а) противоположно направлению предполагаемого движения
- б) по направлению предполагаемого движения
- в) перпендикулярно направлению предполагаемого движения
- 9. Как направлен вектор момента?
- а) вдоль оси вращения в любую сторону
- б) вдоль оси вращения в ту сторону, откуда поворот кажется происходящим против хода часовой стрелки
- в) перпендикулярно оси вращения
- 10. Связи это то, что...
- а) препятствует перемещению тела в пространстве
- б) не препятствует перемещению тела в пространстве
- в) направлено по нормали к направлению перемещения

7.2.4 Примерный перечень вопросов для подготовки к зачёту

1. Основные понятия и аксиомы статики твердого тела.

- 2. Аксиомы статики. Основные типы реакций связей.
- 3. Система сходящихся сил. Условия равновесия.
- 4. План скоростей плоского механизма.
- 5. Момент силы относительно точки и оси.
- 6. План ускорений плоского механизма.
- 7. Условия равновесия плоской системы сил.
- 8. Определение скоростей точек плоского механизма.
- 9. План скоростей плоского механизма.
- 10. Плоская система параллельных сил, условия равновесия.
- 11. Построение плана скоростей плоского кривошипно-ползунного механизма
- 12. План скоростей кривошипно-ползунного механизма.
- 13. Центр параллельных сил. Центр тяжести.
- 14. Определение скоростей и ускорений при естественном способе задания движения точки.
- 15. Определение координат центра тяжести плоских фигур.
- 16. Способы задания движения точки.
- 17. Условия равновесия произвольной плоской системы сил.
- 18. Скорость и ускорение точки при координатном способе задания движения.
 - 19. Простейшие движения твердого тела.
- 20. Условия равновесия плоской системы сходящихся сил.
- 21. План ускорений плоского механизма.
- 22.Основные типы связей и их реакции.
- 23. Три формы условий равновесия плоских систем сил.
- 24. Динамика относительного движения.
- 25. Теорема об изменении кинетической энергии.
- 26. Динамика материальной точки.

7.2.5 Примерный перечень вопросов для подготовки к экзамену Пример типового задания «Статика»

1. Условия равновесия системы сходящихся сил имеют вид

a)
$$\sum_{i=1}^{n} F_{ix} = 0$$
; $\sum_{i=1}^{n} F_{iy} = 0$; $\sum_{i=1}^{n} F_{iz} = 0$

b)
$$\sum_{i=1}^{n} F_{ix} = 0$$
, $\sum_{i=1}^{n} F_{iy} = 0$, $\sum_{i=1}^{n} M_{\hat{I}}(\overline{F}_i) = 0$

c)
$$\sum_{i=1}^{n} F_{iz} = \sum_{i=1}^{n} F_{i} = 0$$
, $\sum_{i=1}^{n} M_{x}(\overline{F}_{i}) = 0$, $\sum_{i=1}^{n} M_{y}(\overline{F}_{i}) = 0$

d)
$$\sum_{i=1}^{n} F_i = 0$$
, $\sum_{i=1}^{n} M_{\hat{I}}(\overline{F}_i) = 0$

e)
$$\sum_{i=1}^{n} F_{ix} = 0$$
, $\sum_{i=1}^{n} F_{iy} = 0$

- 2. Сила реакции Y_A равна:
 - a) 1 кН
 - b) 1,7 κH
 - c) 6,7 kH
 - d) 0
 - e) -1.7 κH
- 3. Алгебраический момент силы относительно оси *z* равен:

b)
$$\overline{r} \times \overline{F}$$

c)
$$yF_z - zF_y$$

d)
$$zF_x - xF_z$$

e)
$$xF_v - yF_x$$

4. Теорема о сумме моментов сил пары имеет вид

a)
$$\overline{M}_0(\overline{F}_1) - \overline{M}_0(\overline{F}_2) = \overline{M}(\overline{F}_1, \overline{F}_2)$$

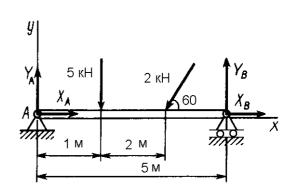
b)
$$\overline{M}_0(\overline{F}_1) + \overline{M}_0(\overline{F}_2) = \overline{M}(\overline{F}_1, \overline{F}_2)$$

c)
$$M_0(\overline{F}_1) + M_0(\overline{F}_2) = M(\overline{F}_1, \overline{F}_2)$$

d)
$$M_0(\overline{F}_1) - M_0(\overline{F}_2) = M(\overline{F}_1, \overline{F}_2)$$

e)
$$M_0(\overline{R}) = M(\overline{F}_1, \overline{F}_2)$$

5. Теорема Вариньона относительно оси имеет вид:


a)
$$\overline{M}_{\hat{I}}\left(\vec{R}^*\right) = \sum_{i=1}^n \overline{M}_{\hat{I}}\left(\overline{F}_i\right)$$

b)
$$M_{\hat{I}}\left(\vec{R}^*\right) = \sum_{i=1}^n M_{\hat{I}}\left(\overline{F}_i\right)$$

c)
$$M_z(\vec{R}^*) = \sum_{i=1}^n \overline{M}_z(\overline{F}_i)$$

d)
$$\overline{M}_z(\vec{R}^*) = \sum_{i=1}^n \overline{M}_z(\overline{F}_i)$$

e)
$$\overline{M}_z(\vec{R}^*) = \sum_{i=1}^n M_z(\overline{F}_i)$$

Пример типового задания «Кинематика»

- 1. Для задания поступательного движения тела достаточно знать:
 - a) $x = f_1(t), y = f_2(t), z = f_3(t)$
 - b) $\varphi = f(t)$
 - c) $x = f_1(t), y = f_2(t), \varphi = f(t)$
 - d) $y = f_2(t), z = f_3(t)$
 - e) $z = f_3(t), y = f_2(t), \varphi = f(t)$
- 2. Абсолютным движением называется:
 - а) движение точки относительно подвижной системы отсчета
 - b) движение точки относительно неподвижной системы отсчета
 - с) движение точки относительно тела отсчета
 - d) движение подвижной системы отсчета относительно неподвижной
 - е) движение точки в собственной системе отсчета
- 3. МЦС это:
 - а) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$, скорость которой равна нулю
 - b) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$, ускорение которой равно нулю
 - с) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$ и $\varepsilon \neq 0$, скорость которой равна нулю
 - d) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, если $\omega \neq 0$ и $\varepsilon \neq 0$, ускорение которой равно нулю
 - е) единственная точка фигуры в каждый момент времени при плоском движении этой фигуры в ее плоскости, скорость и ускорение которой равны нулю
- 4. $\omega_e = 5$ c⁻¹, $h_e = 1.5$ м, $s_r = 4\sin\left(\frac{\pi}{6}t\right)$ м, $\left(\overline{\omega}_e, \overline{v}_r\right) = 30$, $t_1 = 1$ с. Ускорение

Кориолиса равно:

- a) 1,05
- b) 7,5
- c) 37,5
- d) 5,25
- e) -0.95

Пример типового задания «Динамика»

- 1. m=2 Kr, x=4t M, $y=5\sin(3t)$ M, $z=0.2e^{-0.1t}$ M, $t_1=1$ c. F_x pabha:
 - a) 0
 - b) 15
 - c) 0.18
 - d) -0.018
 - e) 30

2. Для прямоугольной пластины:

a)
$$J_{Oz} = \frac{Ml^2}{3}$$

b)
$$J_{\hat{I}z} = M \left(\frac{h^2}{12} + \frac{l^2}{3} \right)$$

c)
$$J_{Oz} = MR^2$$

d)
$$J_{Oz} = M \frac{R^2}{2}$$

e)
$$J_{Oz} = \frac{3}{2}MR^2$$

3. Уравнения Лагранжа имеют вид:

a)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial q_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., n$

b)
$$\frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., n$

c)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., N$

d)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = 0, \quad i = 1, 2, ..., n$$

e)
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i} = Q_i$$
, $i = 1, 2, ..., n$

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Зачёт проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов(5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов—20.

- 1. Оценка «Не зачтено» ставится в случае, если студент набрал менее 8 баллов.
 - 2.Оценка «Зачтено» ставится в случае, если студент набрал от 8 баллов

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов и задачу. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, задача оценивается в 10 баллов(5 баллов верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов—20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 6 баллов.
- 2.Оценка «Удовлетворительно» ставится в случае, если студент набрал от 6 до 10 баллов

- 3.Оценка «Хорошо» ставится в случае, если студент набрал от 11до15 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 16 до 20 баллов.

7.2.7Паспорт оценочных материалов

№п/п	Контролируе мые разделы (темы) дисциплины	Код контролируем ой компетенции	Наименование оценочного средства
1	Статика твердого тела	ОК-11	Тест, контрольная работа, защита реферата.
2	Статика твердого тела	ОК-11	Тест, контрольная работа, защита реферата.
3	Кинематика материальной точки и твердого тела	OK-11	Тест, контрольная работа, защита реферата.
4	Динамика материальной точки и твердого тела	OK-11	Тест, контрольная работа, защита реферата.
5	Динамика материальной точки и твердого тела	OK-11	Тест, контрольная работа, защита реферата.
6	Динамика системы материальных тел	ОК-11	Тест, контрольная работа, защита реферата.

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

|--|

	Авторы,		Вид и	
№	составители.	Заглавие	годы	Обеспеченность
п/п		Surviubile	издания	o occine icimiocia
		Основная литерат		
1	Тарг С.М.	Краткий курс теоретической механики / С.М. Тарг. – М: Высшая школа, 2008. 416 с.	Печ. 2008	1
2	Яблонский А.А.	Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для технических вузов / под ред. А.А. Яблонского. – М.: Интеграл-Пресс, 2006. 384 с.	Печ. 2006	0,5
		Дополнительная лите	ература	
3	Цывильский В.Л.	Теоретическая механика / В.Л. Цывильский. – М: Высшая школа, 2008. 368 с.	Печ. 2008	0.5
4	Мещерский И.В.	Задачи по теоретической механике / И.В. Мещерский. – СПб.: Лань, 2001. 448 с.	Печ. 2001	1
	Д.В. Хван, А.Д. Хван, Ю.Б. Рукин, Р.А. Жилин	Основы теоретической и прикладной механики: учеб. пособие /. — Воронеж: ВГТУ,190 с.	2014	0.5

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

- Microsoft Office Word 2013/2007
- Microsoft Office Excel 2013/2007
- Microsoft Office Power Point 2013/2007
- Электронно-библиотечная система «IPRbooks» (Лицензионный договор от 27.04.2020 № 6685/20 на предоставление доступа к электронно-библиотечной системе IPRbooks (неисключительная лицензия) с ООО Компания «Ай Пи Ар Медиа» (Доступ к ЭБС

IPRbooks. Тематические коллекции и адаптированные технологии для лиц с OB3). Лицензионный договор от 28.08.2020 № 6941/20 на предоставление доступа к электронно-библиотечной системе IPRbooks (неисключительная лицензия) (Доступ к ЭБС IPRbooks))

- Электронно-библиотечная система «Лань» (Договор от 16.03.2020 № 124 с ООО «ЭБС ЛАНЬ»)
- Электронно-библиотечная система «Университетская библиотека онлайн» (Договор от 06.03.2020 № 32-02/20 об оказании информационных услуг с OOO «НексМедиа»).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Комплекс программ для решения задач статики твердого тела и кинематики плоского механизма.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теоретическая механика» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета. Занятия проводятся путем решения конкретных задач в аудитории.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично,
	последовательно фиксировать основные положения,
	выводы, формулировки, обобщения; помечать важные
	мысли, выделять ключевые слова, термины. Проверка
	терминов, понятий с помощью энциклопедий, словарей,
	справочников с выписыванием толкований в тетрадь.
	Обозначение вопросов, терминов, материала, которые
	вызывают трудности, поиск ответов в рекомендуемой
	литературе. Если самостоятельно не удается разобраться в
	материале, необходимо сформулировать вопрос и задать
	преподавателю на лекции или на практическом занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным
	вопросам, просмотр рекомендуемой литературы.
	Прослушивание аудио- и видеозаписей по заданной теме,
	выполнение расчетно-графических заданий, решение задач
	по алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому
	усвоения учебного материала и развитию навыков
	самообразования. Самостоятельная работа предполагает

	следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка
	конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций,
	олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к промежуточной	Готовиться к промежуточной аттестации следует
аттестации	систематически, в течение всего семестра. Интенсивная
	подготовка должна начаться не позднее, чем за
	месяц-полтора до промежуточной аттестации. Данные
	перед зачетом, экзаменом, экзаменом три дня эффективнее
	всего использовать для повторения и систематизации
	материала.

Лист регистрации изменений

	отнет регнетраци		
№		Дата	Подпись заведующего
п/п	Перечень вносимых изменений	внесения	кафедрой,
11/11		изменений	ответственной за
			реализацию ОПОП
1	Актуализирован раздел 8.2 в	31.08.2019	
	части состава используемого	6-	
	лицензионного программного		1
	обеспечения, современных		
	профессиональных баз данных и		
	справочных информационных		
	систем		
2	Актуализирован раздел 8.2 в	31.08.2020	
	части состава используемого		/
	лицензионного программного		\bigcap_{\sim}
	обеспечения, современных		
	профессиональных баз данных и		
	справочных информационных		
	систем		V