МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ВГТУ)

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ Лабораторных работ ПО ДИСЦИПЛИНЕ

Теория автоматического управления

Воронеж 2023

Оглавление

1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ
ЛАБОРАТОРНЫХ РАБОТ
1.1.Исследование динамических свойств типовых звеньев систем
автоматического управления5
1.2.Исследование частотных характеристик линейных систем
автоматического управления7
1.3.Изучение правил преобразования структурных схем систем
автоматического управления8
1.4.Исследование замкнутых систем автоматического управления 11
1.5.Исследование влияния расположения полюсов передаточной функции
на динамические свойства выходных процессов
1.6.Исследование влияния расположения нулей передаточной функции
на динамические свойства выходных процессов
1.7.Исследование нелинейных систем автоматического управления 16
1.8.Исследование скользящих режимов в нелинейных системах
автоматического управления19
1.9.Исследование систем автоматического управления с цифровыми
регуляторами
1.10. Синтез систем автоматического управления с заданным движением21
1.11. Синтез систем стабилизации неустойчивых объектов
автоматического управления путем размещения полюсов
1.12. Синтез систем автоматического управления с полной обратной
связью
1.13. Синтез оптимальных систем автоматического управления с полной
обратной связью 27

1.14. Синтез систем автоматического управления с наблюдателем	
пространственного состояния	28
2. СПИСОК ЛИТЕРАТУРЫ 3	30

1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ

Equation Chapter 1 Section 1

Лабораторные работы по дисциплине «Теория автоматического управления» выполняются с использованием методов математического моделирования. Перед выполнением каждой лабораторной работы необходимо ознакомиться с ее описанием и, если рекомендуемая программная оболочка используется впервые, - с описанием рекомендуемой моделирующей программы.

После выполнения необходимо оформить и отчитать лабораторную работу. Требования к оформлению лабораторных работ определяются локальными нормативными актами вуза. Обычно письменный отчет по лабораторной работе содержит: титульный лист с наименованием, номером и целью работы; схему (или схемы) моделирования; полученные результаты и их объяснение; выводы. Рекомендуется схемы, графики и таблицы по каждой работе хранить в электронном виде в папке, создаваемой студентом в начале семестра.

Порядок допуска к выполнению лабораторной работы, периодичность устного отчета, а также объем выносимого на отчет материала, определяется преподавателем.

1.1. Исследование динамических свойств типовых звеньев систем автоматического управления

Цель работы: Изучение особенностей динамического поведения типовых звеньев систем автоматического управления при ступенчатом входном воздействии.

После выполнения лабораторной работы необходимо знать:

- Типовые звенья систем автоматического управления, их математическое описание в форме дифференциальных уравнений и в операторной форме.

- Передаточные функции типовых звеньев.
- Реакции типовых звеньев на единичное входное воздействие.
- Показатели качества переходных процессов.
- Влияние параметров типовых звеньев на показатели качества переходных процессов.

Порядок выполнения работы

- 1. Осуществить моделирование переходных процессов при g(t)=1(t) для усилительного, дифференцирующего и интегрирующего звеньев при K=3, $T_u=0.5$ и $T_0=2.5$.
- **2.** Осуществить моделирование переходных процессов при g(t)=1(t) для инерционного звена первого порядка при K=1 и $T=(0,1N;\ 0,2N;\ 0,3N;\ 0,4N;\ 0,5N;\ 0,6N;\ 0,7N;\ 0,8N;\ 0,9N;\ 1,0N)$, где N номер студента в списке группы. Для каждого переходного процесса определить время регулирования T_p и построить зависимость $T_p=f(T)$.
- 3. Осуществить моделирование переходных процессов при g(t)=1(t) для инерционного звена второго прядка при K=1, T=(0,2N; 0,4N; 0,6N; 0,8N; 1,0N) и $\xi=0,2$, где N номер студента в списке группы. Для каждого переходного процесса определить время регулирования T_p , перерегулирование δ и число колебаний n. По полученным данным построить зависимость $T_p=f(T)$.
- 4. Осуществить моделирование переходных процессов при g(t)=1(t) для инерционного звена второго прядка при K=1, $\xi=(0,2;\ 0,4;\ 0,6;\ 0,8;\ 1,0)$ и T=0,5N, где N номер студента в списке группы. Для каждого переходного процесса определить время регулирования T_p , перерегулирование δ и число колебаний n. По полученным данным построить зависимость $T_p=f(\xi)$, $\delta=f(\xi)$, $n=f(\xi)$.
- **5.** Осуществить моделирование переходных процессов при g(t)=1(t) для последовательного соединенных инерционного звена первого порядка и зве-

на чистого запаздывания при K=1, T=0.5N и $\tau=(0.2N;\ 0.4N;\ 0.6N;\ 0.8N;\ 1.0N)$, где N- номер студента по списку группы.

6. Сделать выводы о влиянии параметров звеньев на показатели качества переходных процессов.

1.2. Исследование частотных характеристик линейных систем автоматического управления

Цель работы: Изучение частотных свойств линейных систем автоматического управления и их взаимосвязей с временными характеристиками.

После выполнения лабораторной работы необходимо знать:

- Определения и виды частотных характеристик.
- Способы построения частотных характеристик.
- Определение качественных показателей процесса управления по виду частотных характеристик.

Порядок выполнения работы

- **1.** Получить аналитические зависимости и построить АЧХ, ФЧХ и АФЧХ для инерционного звена первого порядка при K=1 и T=(0,1N; 0,2N; 0,3N; 0,4N; 0,5N; 0,6N; 0,7N; 0,8N; 0,9N; 1,0N), где N номер студента в списке группы. По полученным зависимостям определить ширину полосы пропускания ω_n . Построить зависимости $\omega_n = f(T)$ и $T_p = f(\omega_n)$. Зависимость $T_p = f(T)$ получена в лабораторной работе \mathbb{N}_2 1.1.
- **2.** Получить аналитические зависимости и построить АЧХ, ФЧХ и АФЧХ для инерционного звена второго прядка при K=1, T=(0,2N; 0,4N; 0,6N; 0,8N; 1,0N) и $\xi=0,2$, где N номер студента в списке группы. По полученным зависимостям определить ширину полосы пропускания ω_n . Построить зависимости $\omega_n=f(T)$ и $T_p=f(\omega_n)$. Зависимость $T_p=f(T)$ получена в лабораторной работе \mathbb{N}_2 1.1.
 - 3. Построить АЧХ, ФЧХ и АФЧХ для инерционного звена второго прядка

при K=1, $\xi=(0,2;\ 0,4;\ 0,6;\ 0,8;\ 1,0)$ и T=0,5N, где N- номер студента в списке группы. По полученным зависимостям определить максимальное значение АЧХ A_{max} , и ширину полосы пропускания ω_n . Построить зависимости $\omega_n=f(\xi)$, $A_{max}=f(\xi)$ и $\delta=f(A_{max})$. Зависимость $\delta=f(\xi)$ получена в лабораторной работе N = 1.1.

4. Получить аналитические зависимости и построить АЧХ, ФЧХ и АФЧХ для последовательного соединения инерционного звена первого порядка и звена чистого запаздывания при K=1, T=0.5N и $\tau=(0.2N; 0.4N; 0.6N; 0.8N; 1.0N)$, где N — номер студента по списку группы. Сделать выводы о влиянии запаздывания на частотные характеристики.

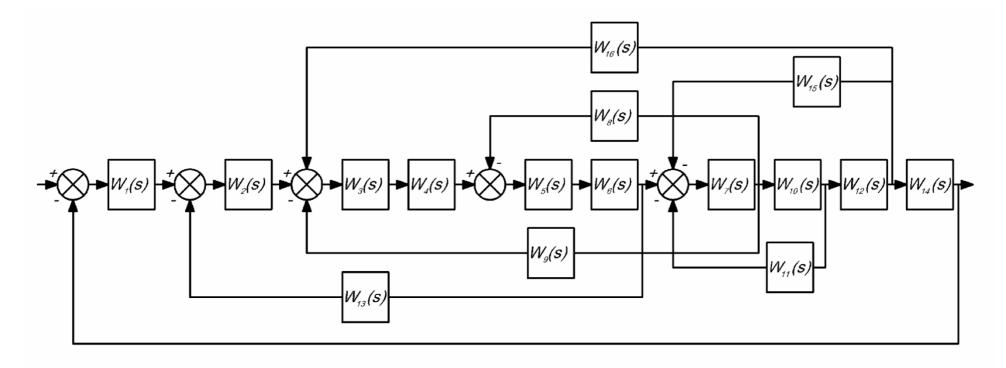
5. Для звена с передаточной функцией $W(s) = \frac{K(T_1s+1)}{T_us(T_2s+1)(T_3s+1)}$ построить точные ЛАЧХ и ЛФЧХ при K=2N; $T_1=0,2N$; $T_u=0,04N$; $T_2=0,003N$; и $T_3=0,0005N$, где N – номер студента по списку группы.

6. Для звена, рассмотренного в п. 5, построить асимптотические ЛАЧХ. Сделать выводы о возможности аппроксимации точных ЛАЧХ асимптотическими.

7. Построить точные ЛАЧХ и ЛФЧХ для звена, рассмотренного в п.3. Сделать вывод о возможности аппроксимации полученных характеристик асимптотическими ЛАЧХ.

8. Сделать общий вывод по работе.

1.3. Изучение правил преобразования структурных схем систем автоматического управления


Цель работы: Изучение способов преобразования структурных схем систем автоматического управления.

После выполнения лабораторной работы необходимо знать правила:

- объединения последовательно соединенных звеньев в одно звено,
- объединения согласно параллельно соединенных звеньев в одно звено,
- объединения встречно параллельно соединенных звеньев в одно звено,
- переноса линии связи до звена,
- переноса линии связи за звено,
- переноса сравнивающего устройства до звена,
- переноса сравнивающего устройства за звено.

Порядок выполнения работы

- **1.** Осуществить моделирование переходного процесса в системе автоматического управления, структурная схема которой приведена на Рис. 1.5.
- **2.** Используя правила переноса линий связи и элементов сравнения исключить перекрестные связи в системе, структурная схема которой приведена на Рис. 1.5.
- **3.** Осуществить моделирование переходных процессов в системе, полученной в п. 2. Сравнить результаты моделирования.
- **4.** Используя правила преобразования структурных схем получить эквивалентную передаточную функцию системы автоматического управления, структурная схема которой получена в п. 2.
- **5.** Осуществить моделирование переходных процессов в системе, полученной в п.4. Сравнить результаты моделирования.

$$W_1(s) = W_5(s) = W_{12}(s) = \frac{0.2N}{0.1Ns+1},$$

$$W_{2,...,4}(s) = W_{6,...,11}(s) = W_{13,...,16}(s) = 0.5N$$

где N — номер студента по списку группы.

Рис. 1.1. Структурная схема системы автоматического управления.

1.4. Исследование замкнутых систем автоматического управления

Цель работы: Изучение влияния обратной связи и типовых законов регулирования на динамические свойства замкнутой системы.

После выполнения лабораторной работы необходимо знать:

- Определение обратной связи и их виды.
- Способы определения передаточной функции звена с обратной связью.
- Передаточные функции типовых законов регулирования.
- Влияние коэффициента передачи обратной связи на переходные характеристики замкнутой системы.
- Влияние параметров настройки типовых регуляторов на переходные характеристики замкнутой системы.

Теоретические сведения

Одной из методик выбора настроек ПИД регулятора является методика предложенная Зиглером и Никольсоном, цель которой состоит в том, чтобы получить отношение 4:1 для первого и второго максимумов на переходной характеристике замкнутой системы. Правила выбора параметров настройки регуляторов приведены в Табл. 1.2, где Значения K_{θ} , v_{θ} и τ_{θ} определяются по переходной характеристике объекта (Рис. 1.8.) в соответствии со следующими выражениями:

$$K_{\theta} = \frac{x(\infty) - x(\theta)}{u(\infty) - u(\theta)}; \ \tau_{\theta} = t_1 - t_{\theta}; \ \nu_{\theta} = t_2 - t_1.$$

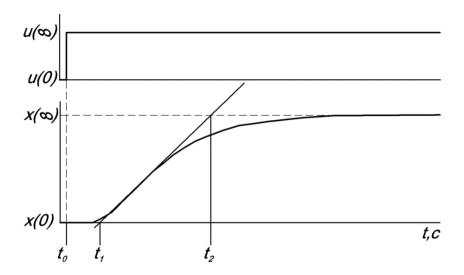


Рис. 1.2. Переходная характеристика объекта управления.

Табл. 1.1 Настройки Зиглера–Никольса

	K_p	T_u	T_{∂}
П	$\frac{v_{\theta}}{K_{\theta}\tau_{\theta}}$		
пи	$\frac{\theta.9v_{\theta}}{K_{\theta}\tau_{\theta}}$	$3 au_{ heta}$	
пид	$\frac{1.2v_0}{K_0\tau_0}$	$2 au_{ heta}$	$0.5 au_0$

Порядок выполнения работы

- 1. Для объекта с передаточной функцией $W_{ob}(s) = \frac{1}{(Ns+1)^2}$, где N номер студента по списку группы, в соответствии с Рис. 1.6 составить схему моделирования с отрицательной обратной связью при $W_{oc}(s) = K_{oc}$.
- **2.** Изменяя K_{oc} от 1 до 10 с шагом 1 построить совмещенные графики переходных процессов в замкнутой системе. Сопоставить полученные результаты и сделать вывод о влиянии коэффициента передачи обратной связи на переходную характеристику замкнутой системы.
 - 3. Для объекта с передаточной функцией $W_{o\delta}(s) = \frac{e^{-0.7\,Ns}}{\left(Ns+1\right)^2}$, где N но-

мер студента по списку группы, определить K_{θ} , ν_{θ} и τ_{θ} .

- **4.** В соответствии с Табл. 1.2 рассчитать коэффициент передачи K_{ph} пропорционального регулятора и в соответствии с Рис. 1.7 составить схему моделирования системы с отрицательной обратной связью и Π –регулятором.
- **5.** Изменяя коэффициент передачи K_p в пределах $0.5K_{ph} 1.5K_{ph}$ построить совмещенные графики переходных процессов в замкнутой системе. Сопоставить полученные результаты и сделать вывод о влиянии коэффициента передачи регулятора на переходную характеристику замкнутой системы.
- **6.** В соответствии с Табл. 1.2 рассчитать коэффициент передачи K_{ph} и постоянную времени интегрирования T_{uh} ПИ—регулятора, и в соответствии с Рис. 1.7 составить схему моделирования системы с отрицательной обратной связью и ПИ—регулятором.
 - 7. Для полученной системы при $T_u = T_{un}$ выполнить п.5.
- **8.** Изменяя постоянную времени интегрирования T_u в пределах $0.5T_{uh}$ $1.5T_{uh}$ при $K_p = K_{ph}$ построить совмещенные графики переходных процессов в замкнутой системе. Сопоставить полученные результаты и сделать вывод о влиянии постоянной времени интегрирования на переходную характеристику замкнутой системы.
- 9. В соответствии с Табл. 1.2 рассчитать коэффициент передачи K_{ph} , постоянную интегрирования T_{uh} и постоянную времени дифференцирования T_{oh} ПИД-регулятора. Дополнительную постоянную времени τ_D выбрать исходя из условия $0.1T_{oh} \leq \tau_D \leq 0.2T_{oh}$. В соответствии с Рис. 1.7 составить схему моделирования системы с отрицательной обратной связью и ПИД-регулятором.
 - **10.** Для полученной системы при $T_u = T_{un}$ и $T_{\partial} = T_{\partial n}$ выполнить п.5.
 - **11.** Для полученной системы при $T_u = T_{un}$ и $K_p = K_{pn}$ выполнить п.8.
- 12. Изменяя постоянную времени дифференцирования T_{∂} в пределах θ , $5T_{\partial n}$ 1, $5T_{\partial n}$ при $K_p = K_{pn}$ и $T_u = T_{un}$ построить совмещенные графики переходных процессов в замкнутой системе. Сопоставить полученные результаты и сделать вывод о влиянии постоянной времени дифференцирования на переход-

1.5. Исследование влияния расположения полюсов передаточной функции на динамические свойства выходных процессов

Цель работы: Изучение влияния расположения полюсов передаточной функции звена на качество (характер) переходных процессов при ступенчатом входном воздействии.

После выполнения лабораторной работы необходимо знать:

- Влияние расположения полюсов передаточной функции звена (системы) на качество переходного (выходного) процесса.
- Связь между расположением корней и показателями качества регулирования (время регулирования, колебалельность).
- Причины, приводящие к изменению динамических свойств системы при приближении корней к мнимой оси.

Порядок выполнения работы.

- 1. Установить связь между параметрами звена с передаточной функцией $W(s) = \frac{1}{(T_1 s + 1)(T_2^2 s^2 + 2T_2 \xi s + 1)}$ и его полюсами.
- 2. Задавшись расположением полюсов (s_1 =-1 $s_{2,3}$ =-0.05 $\pm j1$); (s_1 =-1 $s_{2,3}$ =-0.2 $\pm j1$); (s_1 =-1 $s_{2,3}$ =-0.8 $\pm j1$), рассчитать для каждой тройки полюсов параметры звена T_1 , T_2 и ξ .
- **3.** Осуществить моделирование переходных процессов при единичном ступенчатом входном воздействии для каждой тройки полюсов. Результаты моделирования представить на одном графике. По результатам моделирования сделать вывод о характере изменения переходных процессов во взаимосвязи с изменением расположения полюсов.
- 4. Задавшись расположением полюсов (s_1 =-2 $s_{2,3}$ =-0.05 $\pm j1$); (s_1 =-2 $s_{2,3}$ =-0.2 $\pm j1$); (s_1 =-2 $s_{2,3}$ =-0.8 $\pm j1$), рассчитать для

каждой тройки полюсов параметры звена T_1 , T_2 и ξ . Повторить п. 3.

- 5. Сравнить результаты моделирования пп. 2, 3 и п. 4. Сделать выводы.
- 6. Задавшись расположением полюсов (s_I =-1 $s_{2,3}$ =-0.2 $\pm j$ 0,s); (s_I =-1 $s_{2,3}$ =-0.2 $\pm j$ 0,s); (s_I =-1 $s_{2,3}$ =-0.2 $\pm j$ 0,s); (s_I =-1 $s_{2,3}$ =-0.2 $\pm j$ 0,s), рассчитать для каждой тройки полюсов параметры звена T_I , T_2 и ξ . Повторить п. 3.
- 7. Задавшись расположением полюсов (s_1 =-2 $s_{2,3}$ =-0.2 $\pm j$ 0,s); (s_1 =-2 $s_{2,3}$ =-0,2 $\pm j$ 0,s), рассчитать для каждой тройки полюсов параметры звена T_1 , T_2 и ξ . Повторить п. 3.
 - 8. Сравнить результаты моделирования пп. 6 и 7. Сделать выводы.
- 9. Задавшись расположением полюсов (s_1 =-0,05 $s_{2,3}$ =-1 $\pm j1$); (s_1 =-0,2 $s_{2,3}$ =-1 $\pm j1$); (s_1 =-0,5 $s_{2,3}$ =-1 $\pm j1$); (s_1 =-0,8 $s_{2,3}$ =-1 $\pm j1$) , рассчитать для каждой тройки полюсов параметры звена T_1 , T_2 и ξ . Повторить п. 3.
 - 10. Сделать общий вывод по работе.

1.6. Исследование влияния расположения нулей передаточной функции на динамические свойства выходных процессов

Цель работы: Изучение влияния расположения нулей передаточной функции звена на качество (характер) переходных процессов при ступенчатом входном воздействии.

После выполнения лабораторной работы необходимо знать:

- Влияние расположения нулей передаточной функции звена (системы) на качество переходного (выходного) процесса.
- Связь между расположением нулей и показателями качества регулирования (перерегулирование, недорегулирование).

Порядок выполнения работы

Рассматривается система, с передаточной функцией

$$W(s) = \frac{-a_1 s + c}{c(s+1)(0.5s+1)},$$

ı

имеющая полюсы s_1 =-1 и s_2 =-2.

- 1. Осуществить моделирование переходных процессов при единичном ступенчатом входном воздействии и $a_1=0$ и c=1. По полученной переходной характеристике определить время регулирования t_{pez} (d принять равным 0,02).
- **2.** Осуществить моделирование при a_1 =1 и c= $\pm (0,1; 0,2; 0,3; 0,5; 1; 5; 10). Результаты моделирования представить на одном графике, с обязательным указанием значения <math>c$.
- **3.** По данным, полученным в п. 2 определить перерегулирование и недорегулирование для каждого переходного процесса.
- **4.** Рассчитать оценки перерегулирования и недорегулирования, используя зависимости (1.34) и (1.35). Сопоставить полученные данные с результатами п.3.
 - 5. Сделать выводы по работе.

1.7. Исследование нелинейных систем автоматического управления

Цель работы: Изучение особенностей выходных процессов нелинейных систем автоматического управления и построения фазовых портретов.

После выполнения лабораторной работы необходимо знать:

- Виды и статические характеристики нелинейных элементов.
- Понятия фазовой траектории и фазовой скорости.
- Методы построения фазовых портретов.
- Особенности фазовых портретов и их связь с временными характеристиками системы.

Порядок выполнения работы

Рассматривается тепловой объект (ямная камера), описываемый дифференциальным уравнением первого прядка

$$T_{\theta} \frac{d\Theta}{dt} + \Theta = k_{\theta} \varphi \tag{1.1}$$

где T_{θ} – постоянная времени объекта, Θ - температура, φ - угол поворота клапана, изменяющего поток энергоносителя (например пара) к объекту, k_{θ} – коэффициент передачи объекта. Ели в качестве исполнительного устройства используется регулируемый электродвигатель постоянного тока с редуктором то уравнение, связывающее напряжение на якоре и угол поворота клапана имеет вид

$$\frac{d\varphi}{dt} = k_{3\partial} u(t), \tag{1.2}$$

где $k_{i\partial}$ — коэффициент передачи по указанному каналу (инерционностью самого электродвигателя пренебрегаем), u(t) — напряжение на якоре двигателя.

Продифференцировав (1.42), с учетом (1.43), получим уравнение, связывающее напряжение на якоре и температуру в объекте

$$T_{\theta} \frac{d^2 \Theta}{dt^2} + \frac{d\Theta}{dt} = k_{\theta} k_{\theta} u \tag{1.3}$$

Пусть управляющее воздействие формируется релейным элементом **F** в функции сигнала рассогласования $\varepsilon = g - x_1$, где g — задающее воздействие, $x_1 = k_0 \Theta$ сигнал цепи обратной связи, k_0 — коэффициент передачи датчика. С учетом изложенного, дифференциальное уравнение автономной замкнутой системы запишем в виде

$$T_{0} \frac{d^{2}x_{1}}{dt^{2}} + \frac{dx_{1}}{dt} = -k_{0}k_{20}k_{0}F(x_{1})$$
(1.4)

1. Собрать схему моделирования в соответствии с (1.45), используя нелинейное звено **F**, представленное на Рис. 1.10,а (коэффициенты передачи и постоянная времени определяются по Табл. 1.3 в соответствии с номером студента по списку группы, параметры нелинейного элемента одинаковы для всех вариантов B=100 и C=0,05).

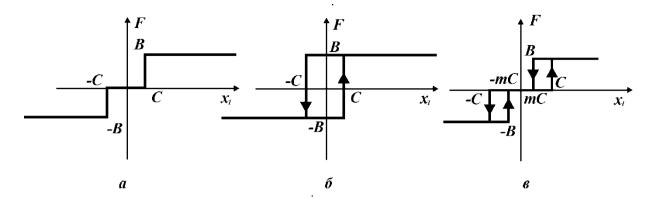


Рис. 1.3. Характеристики нелинейных элементов.

- **2.** Осуществить расчет фазовых траекторий и соответствующих им переходных процессов автономной системы при $\dot{x}_1(\theta) = \theta$ и $x_1(\theta) = \pm (0,1; \theta,2; \theta,3; \theta,4; \theta,5; \theta,6; \theta,7)$. Построить (используя файлы данных) результирующий фазовый портрет и совмещенные графики переходных процессов.
- **3.** Изменить статическую характеристику нелинейного звена (Рис. 1.10,б) и повторить п. 2. (B=100, C=0,05)
- **4.** Изменить статическую характеристику нелинейного звена (Рис. 1.10,в) и повторить п. 2. (B=100; C=0,1; m=0,5)
 - 5. Сопоставить результаты расчета по пп 3 и 4 и сделать вывод.

Табл. 1.2

	Варианты заданий											
N	T_{θ}	k_{θ}	$k_{i\partial}$	k_{δ}		N	T_{θ}	k_{θ}	$k_{i\partial}$	k_{δ}		
1	10	10	0,0020	0,25		12	9,5	16	0,0020	0,15		
2	9,5	9	0,0022	0,25		13	9	12,5	0,0020	0,20		
3	9	8	0,0025	0,25		14	8,5	10	0,0100	0,05		
4	8,5	7	0,0029	0,25		15	8	10	0,0050	0,10		
5	8	6	0,0033	0,25		16	7,5	10	0,0033	0,15		
6	7,5	5	0,0040	0,25		17	8,5	7	0,0029	0,25		
7	7	50	0,0020	0,05		18	8	6	0,0033	0,25		
8	10	25	0,0020	0,10		19	7,5	5	0,0040	0,25		
9	9,5	16	0,0020	0,15		20	7	50	0,0020	0,05		
10	9	12,5	0,0020	0,20		21	10	25	0,0020	0,10		
11	8,5	10	0,0100	0,05		22	9,5	16	0,0020	0,15		

1.8. Исследование скользящих режимов в нелинейных системах автоматического управления

Цель работы: Изучение особенностей выходных процессов нелинейных систем автоматического управления, работающих в скользящем режиме.

После выполнения лабораторной работы необходимо знать:

- Понятие «скользящий режим».
- Особенности фазовых портретов систем управления, работающих в скользящем режиме.
 - Способы реализации скользящих режимов.

Порядок выполнения работы

1. Составить схему моделирования замкнутой системы, описываемой дифференциальным уравнением

$$\frac{T_0}{k_0 k_{20} k_0} \frac{d^2 x_1}{dt^2} + \frac{1}{k_0 k_{20} k_0} \frac{d x_1}{dt} = -F(x_1),$$

где T_{θ} , k_{θ} , k_{θ} , k_{θ} – определяются заданием к лабораторной работе № 1.7, а $F(x_{I})$ – соответствует Рис. 1.11,6. Структурная схема объекта управления должна соответствовать Рис. 1.13.

- **2.** Осуществить расчет фазовых траекторий и соответствующих им переходных процессов автономной системы при $\dot{x}_1(\theta) = \theta$ и $x_1(\theta) = \pm (\theta, 1; \theta, 2; \theta, 3; \theta, 4; \theta, 5; \theta, 6; \theta, 7)$. Построить (используя файлы данных) результирующий фазовый портрет и совмещенные графики переходных процессов.
- **3.** Ввести в систему отрицательную обратную связь по скорости изменения регулируемой координаты. Выполнить п. 2.
- **4.** Составить схему моделирования в соответствии с Рис. 1.13. для линейной автономной системы, описываемой дифференциальным уравнением

$$\ddot{x} + N\ddot{x} + N\dot{x} + x = 0$$
,

где N – номер студента по списку группы.

5. Построить зависимости x(t) и $\dot{x}(t) = \theta$ при $\dot{x}(\theta) = \theta$ и

- $x(0) = \pm (0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7).$
 - 6. Построить фазовый портрет в линейной системе.
- 7. Ввести в прямой канал управления нелинейный элемент со статической характеристикой идеального релейного элемента (Рис. 1.11, б), замыкая систему по положению *х* регулируемой координаты. Выполнить пп. 5 и 6.
- **8.** Ввести в систему отрицательную обратную связь по скорости изменения регулируемой координаты. Выполнить пп. 5 и 6.
 - 9. Сравнить полученные результаты и сделать вывод.

1.9. Исследование систем автоматического управления с цифровыми регуляторами

Цель работы: Изучение влияния метода аппроксимации и периода квантования на качество (характер) переходных процессов в системах с цифровыми регуляторами.

После выполнения лабораторной работы необходимо знать:

- Методику получения дискретных передаточных функций цифровых регуляторов.
- Влияния метода аппроксимации и периода квантования на качество (характер) переходных процессов в системах с цифровыми регуляторами.

Порядок выполнения работы

1. Для объекта, передаточная функция которого имеет вид $W_{o\delta}(s) = \frac{0.5N}{(Ns+1)(2Ns+1)}, \text{ где } N - \text{ номер студента в списке группы, лю-}$

бым известным методом синтезировать аналоговый ПИ регулятор, обеспечивающий в замкнутой системе перерегулирование на уровне 10–20%. Составить структурную схему моделирования переходного процесса в замкнутой системе.

2. Записать дискретные передаточные функции ПИ регулятора с настрой-

ками, определенными в п.1, при аппроксимации операции интегрирования методом прямоугольников, для периодов квантования $T=\{N/10, N/8, N/6, N/4, N/2, N\}$. Составить структурную схему моделирования переходного процесса в замкнутой системе.

- 3. Записать дискретные передаточные функции ПИ регулятора с настройками, определенными в п.1, при аппроксимации операции интегрирования методом трапеций, для периодов квантования $T=\{N/10, N/8, N/6, N/4, N/2, N\}$. Составить структурную схему моделирования переходного процесса в замкнутой системе.
- **4.** Осуществить моделирование переходных процессов в аналоговой и дискретных системах при заданных значениях периода квантования. Результаты моделирования представить в виде совмещенных графиков для каждого значения периода квантования.
- **5.** Используя результаты, полученные в п.4 построить зависимости перерегулирования δ и времени регулирования T_p от периода квантования T для дискретных систем использующих аппроксимацию операции интегрирования методом прямоугольников и трапеций.
 - 6. Сделать выводы по работе.

1.10. Синтез систем автоматического управления с заданным движением

Цель работы. Освоение методов формирования алгоритмов управления с заданным движением выходной координаты.

После выполнения лабораторной работы необходимо знать:

- Понятие «движение системы» и его отличие от понятия «состояние системы».
- Способ формирования алгоритмов управления с заданным движением выходной координаты.
 - Ограничения, налагаемые возможностями непосредственного измере-

ния возмущающих воздействий на реализуемые алгоритмы.

Порядок выполнения работы

- **1.** Для объекта (1.64) найти управляющее воздействие u обеспечивающее изменение частоты ω в соответствии с (1.65).
- **2.** Составить схему моделирования системы управления компрессором при K = 1 и значениях параметров, указанных в Табл. 1.4 (N номер студента по списку группы).
- **3.** Подать на вход системы гармонический сигнал единичной амплитуды частотой C и осуществить моделирование, фиксируя значения входного и выходного сигналов системы. Построить фигуры Лиссажу, откладывая по оси абсцисс входное воздействие, а по оси ординат выходную координату (ω).
- **4.** Решить (аналитически или методом моделирования) систему (1.65) при соответствующих значениях C, ω_3 и сравнить (построением фигур Лиссажу) с результатами моделирования.

Варианты заданий

5. Сделать выводы и составить отчет.

Табл. 1.3

N	M _{max}	O max	J	m_0	$oldsymbol{eta_c}$	C	N	M _{max}	O max	J	m_{θ}	$oldsymbol{eta_c}$	C
1	1	1	0,5	0,2	0,2	0,1	12	1	1	0,8	0,5	0,2	1,2
2	1	1	0,1	0,5	0,1	0,5	13	1	1	0,3	0,2	0,5	0,5
3	3	3	0,8	0,5	0,2	1,0	14	10	10	1,2	0,1	0,2	2,0
4	2	1	0,8	0,5	0,2	1,2	15	1	1	0,5	0,1	0,2	1,0
5	1	1	0,3	0,2	0,5	0,5	16	2	1,5	1,2	0,1	0,2	2,0
6	2	1,5	1,2	0,1	0,2	2,0	17	1	1	0,5	0,1	0,2	1,0
7	1	1	0,5	0,1	0,2	1,0	18	2,2	1,5	0,8	0,5	0,1	1,2
8	2,2	1,5	0,8	0,5	0,1	1,2	19	1	1	0,6	0,1	0,1	0,8
9	2	1	0,6	0,1	0,1	0,8	20	1	1	0,5	0,2	0,1	0,8
10	1	2	0,5	0,2	0,1	0,8	21	3	3	0,8	0,5	0,2	1,0
11	1	1	0,8	0,5	0,2	1,2	22	1	1	0,8	0,5	0,2	1,2

1.11. Синтез систем стабилизации неустойчивых объектов автоматического управления путем размещения полюсов

Цель работы: Изучение способа синтеза систем автоматического управления размещения корней характеристического уравнения замкнутой системы операторным методом.

После выполнения лабораторной работы необходимо знать:

- Принцип модального управления.
- Метод синтеза систем управления, базирующийся на размещении коней характеристического уравнения замкнутой системы.

Порядок выполнения работы.

Рассматривается маятник с неустойчивым положением равновесия /3/, схема которого приведена на Рис. 1.15, где обозначено y(t) — расстояние от опорной точки, $\Theta(t)$ — угол отклонения маятника, f(t) — сила, приложенная к маятнику.

Пусть необходимо обеспечить стабилизацию верхнего положения маятника. Считаем массу *m* маятника сосредоточенной в точке, а трение и сопротивление среды – отсутствующими. Тогда малые отклонения маятника от верхнего положения равновесия описываются дифференциальными уравнениями

$$y(t)'' = \frac{1}{\lambda_m + \sin^2 \Theta(t)} \left[\frac{f(t)}{m} + \Theta^2(t)' l \sin \Theta(t) - g \cos \Theta(t) \sin \Theta(t) \right]$$

$$\Theta(t)'' = \frac{1}{l(\lambda_m + \sin^2 \Theta(t))} \left[-\frac{f(t)}{m} \cos \Theta(t) + \Theta^2(t)' l \sin \Theta(t) \cos \Theta(t) \right]$$

$$+g(1 + \lambda_m) \sin \Theta(t)$$
(1.5)

где M — масса тележки, m — масса маятника, l — длина маятника, g — ускорение свободного падения, $\lambda_m = M/m$.

Учитывая, что при малых α $sin(\alpha)$ ≈ θ и $cos(\alpha)$ ≈l, а также α^2 ≈ θ и

 $\left(\alpha^2\right)' \approx \theta$ перепишем (1.71) в виде

$$y(t)'' = \frac{1}{\lambda_m} \left[\frac{f(t)}{m} - g\Theta(t) \right]$$

$$\Theta(t)'' = \frac{1}{l\lambda_m} \left[-\frac{f(t)}{m} \cos\Theta(t) + g(1 + \lambda_m)\Theta(t) \right]$$
(1.6)

Взяв преобразования Лапласа этих уравнений, получим

$$\frac{Y(s)}{F(s)} = K \frac{s^2 - b^2}{s^2(s^2 - a^2)},$$

где
$$a^2 = \frac{(1+\lambda_m)g}{l\lambda_m}, b^2 = \frac{g}{l}, K = \frac{1}{M}.$$

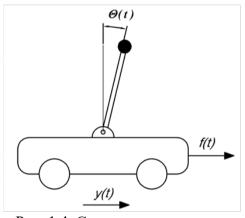


Рис. 1.4. Схема перевернутого маятника.

Как видно из полученной передаточной функции два полюса рассмотренной системы равны нулю, а один — положителен, что свидетельствует о неустойчивости верхнего положения маятника.

1. Используя данные Табл. 1.5 рассчитать коэффициенты a^2 , b^2 и K передаточной функции, соответствующий своему варианту. Вариант определяется номером студента

в списке группы.

- **2.** Рассчитать порядок числителя n_p и знаменателя n_l передаточной функции регулятора, а также порядок желаемого характеристического уравнения n_c замкнутой системы.
- **3.** Определить область расположения полюсов замкнутой системы обеспечивающую степень устойчивости не менее η и колебательность не более μ (Табл. 1.5). Указание: см. лабораторную работу N = 1.5.
 - 4. Рассчитать коэффициенты регулятора.
- **5.** Составить структурную схему моделирования автономной системы с произвольными (не нулевыми) начальными условиями и осуществить моде-

лирование процессов управления.

6. Определить передаточную функцию разомкнутой и замкнутой системы и по частотным характеристикам определить частоту среза замкнутой системы.

Табл. 1.4 Варианты заданий

Вариант	m	M	l	η	μ	Вариант	m	M	l	η	μ
1	0,4	0,55	1,05	0,5	0,1	12	0,6	0,5	1,2	0,5	0,1
2	0,45	0,6	1,15	0,6	0,15	13	0,6	0,45	1,0	0,6	0,15
3	0,5	0,5	1,20	0,7	0,2	14	0,55	0,4	1,25	0,7	0,2
4	0,55	0,45	1,25	0,8	0,25	15	0,5	0,5	1,05	0,8	0,25
5	0,6	0,4	1,30	0,9	0,3	16	0,45	0,5	1,15	0,9	0,3
6	0,6	0,5	1,35	1,0	0,1	17	0,4	0,45	1,2	1,0	0,1
7	0,55	0,5	1,4	0,5	0,15	18	0,45	0,45	1,05	0,5	0,15
8	0,5	0,45	1,45	0,6	0,2	19	0,4	0,4	1,15	0,6	0,2
9	0,45	0,4	1,5	0,7	0,25	20	0,4	0,5	1,20	0,7	0,25
10	0,4	0,4	1,25	0,8	0,3	21	0,6	0,6	1,25	0,8	0,3
11	0,55	0,45	1,05	0,9	0,15	22	0,6	0,5	1,30	0,9	0,15

1.12. Синтез систем автоматического управления с полной обратной связью

Цель работы. Изучение методов синтеза систем автоматического управления с полной обратной связью.

После выполнения работы необходимо знать:

Формирование управляющих воздействий при реализации алгоритмов
 в форме пространства состояний.

- Определение матрицы обратных связей.
- Особенности построения структурных схем систем управления

Порядок выполнения работы

Передаточная функция исследуемой системы (теплового объекта) $\text{представлена в виде } W(s) = \frac{b_{\theta}e^{-s\tau}}{s^2 + a_1 s + a_{\theta}}, \text{ а ее параметры приведены в Табл.}$

1.6 в соответствии с номером варианта.

Приведение исследуемой передаточной функции к виду (1.73) возможно разложением звена чистого запаздывания в ряд Паде.

$$e^{-s\tau} \approx \frac{-\frac{\tau}{2}s+1}{\frac{\tau}{2}s+1}.$$

- **1.** Синтезировать алгоритм управления, отвечающий требуемым степени устойчивости η и колебательности μ (Табл. 1.6).
- **2.** Осуществить моделирование динамических режимов в автономной и неавтономной системах, назначив контрольными точками выход системы и все ее фазовые координаты. Построить графики переходных характеристик.
- **3.** Увеличить степень устойчивости в 2 раза и повторить пп 1 и 2. Сравнить результаты и сделать вывод, что стремление к быстрому затуханию процессов выбор больших по модулю желаемых корней, т.е. увеличение одного из корневых показателей качества степени устойчивости (быстродействия) η , приводит к тому, что некоторые из переменных состояния и переменная управления за время процесса изменяются с большой скоростью и принимают очень большие значения. Составить отчет.

Табл. 1.5

Варианты заданий

Ŋoౖ	a_1	a_{θ}	\boldsymbol{b}_{θ}	τ	η	μ	No	a_1	a_{θ}	\boldsymbol{b}_{θ}	τ	η	μ
1	0,10	1,00	0,50	0,5	0,1	1,55	12	0,65	1,55	1,05	1,6	0,1	1,00

No	a_1	a ₀	b ₀	τ	η	μ	Ŋoౖ	a_1	a ₀	\boldsymbol{b}_{θ}	τ	η	μ
2	0,15	1,05	0,55	0,6	0,2	1,60	13	0,70	1,60	1,10	1,7	0,2	1,05
3	0,20	1,10	0,60	0,7	0,3	1,65	14	0,75	1,65	1,15	1,8	0,3	1,10
4	0,25	1,15	0,65	0,8	0,4	1,70	15	0,80	1,70	1,20	1,9	0,4	1,15
5	0,30	1,20	0,70	0,9	0,5	1,75	16	0,85	1,75	1,25	2,0	0,5	1,20
6	0,35	1,25	0,75	1,0	0,6	1,80	17	0,90	1,80	1,30	2,1	0,6	1,25
7	0,40	1,30	0,80	1,1	0,7	1,85	18	0,95	1,85	1,35	2,2	0,7	1,30
8	0,45	1,35	0,85	1,2	0,8	1,90	19	1,00	1,90	1,40	2,3	0,8	1,35
9	0,50	1,40	0,90	1,3	0,9	1,95	20	1,05	1,95	1,45	2,5	0,9	1,40
10	0,55	1,45	0,95	1,4	1,0	2,00	21	1,10	2,00	1,50	2,5	1,0	1,45
11	0,60	1,50	1,00	1,5	1,1	2,05	22	1,15	2,05	1,55	2,6	1,1	1,50

1.13. Синтез оптимальных систем автоматического управления с полной обратной связью

Цель работы. Изучение способов оптимизации процессов управления. **После выполнения работы необходимо знать:**

- Понятия оптимального управления и основные критерии оптимизации.
- Метод синтеза оптимальных систем автоматического управления при бесконечном интервале оптимизации.

Порядок выполнения работы

Объект описывается дифференциальными уравнениями

$$\frac{dx_1(t)}{dt} = x_2(t),$$

$$\frac{dx_2(t)}{dt} = u(t).$$
(1.7)

а функционал оптимизации:

$$J = \frac{1}{2} \int_{0}^{\infty} [ax_{1}^{2}(t) + bx_{2}^{2}(t) + u^{2}(t)] dt \rightarrow min,$$

где a и b определяются по Табл. 1.7 в соответствии с номером студента по списку группы.

- 1. Определить оптимальное управление в задаче (1.81).
- 2. Составить структурную схему расчета динамических режимов.
- **3.** Осуществить моделирование динамических режимов управления в автономной $u(t)_{3a\partial}=0$, $x_1(0)=\pm(0.5,...,5)$ и неавтономной $u(t)_{3a\partial}=1$, $x_1(0)=0$ системах.
 - 4. Сделать выводы и составить отчет.

Табл. 1.6

Варианты заданий

№	а	b
1	0,1	2,5
2	0,2	2,4
3	0,3	2,3
4	0,4	2,2
5	0,5	2,1
6	0,6	2,0
7	0,7	1,9
8	0,8	1,8
9	0,9	1,7

No	а	b
10	1,0	1,6
11	1,1	1,5
12	1,2	1,4
13	1,3	1,3
14	1,4	1,2
15	1,5	1,1
16	1,6	1,0
17	1,7	0,9
18	1,8	0,8

№	а	b
19	1,9	0,7
20	2,0	0,6
21	2,1	0,5
22	2,2	0,4

1.14. Синтез систем автоматического управления с наблюдателем пространственного состояния

Цель работы. Усвоение навыков формирования алгоритмов управления в форме пространства состояний при неполной обратной связи.

После выполнения работы необходимо знать:

- Основные понятия и определения.
- Методы построения систем с неполной обратной связью.

– Виды наблюдателей пространственного состояния.

Порядок выполнения работы.

- **1.** Синтезировать наблюдатель состояния для объекта, рассмотренного в лабораторной работе № 1.12.
- 2. Собрать схему моделирования системы с наблюдателем (закон управления синтезирован в лабораторной работе № 1.12).
- 3. Осуществить моделирование динамических режимов в автономной $(g = 0, x_0 = 0, 5)$ и неавтономной $(u = 1, x_0 = 0)$ системах, контролируя значения x и \hat{x} .
- 4. Подать на выход объекта единичное ступенчатое возмущающее воздействие и повторить п. 3

2. СПИСОК ЛИТЕРАТУРЫ

- 1. Волков В.Д., Десятирикова Е.Н., Смольянинов А.В. Теория автоматического управления\ Под ред. проф. В.Д. Волкова. -М.: КноРус, 2010.
- 2. Воронов А.А. Основы теории автоматического регулирования и управления. Учеб. пособие для вузов. М.: «Высш. школа», 1977. 519с. с ил.
- 3. Гудвин Г.К. Проектирование систем управления/Г.К. Гудвин, С.Ф. Гребе, М.Э. Сальгадо. -М.: БИНОМ. Лаборатория знаний, 2004.-911с., ил.
- 4. Филлипс Ч., Харбор Р. Системы управления с обратной связью. [перев.] Копылова Б.И. -М.: Лаборатория базовых знаний, 2001 - 616с.: ил.
- 5. Топчеев Ю.И., Цыпляков А.П. Задачник по теории автоматического регулирования. Учебное пособие для вузов. -М.: "Машиностроение", 1977. 592с. с ил.
- 6. Пантелеев А.В. Теория управления в примерах и задачах. Учебное пособие/А.В. Пантелеев, А.С. Бортковский. –М.: Высшая школа, 2003.- 583 с.