ФГБОУ ВПО «Воронежский государственный технический университет»

Кафедра систем информационной безопасности

218-2015

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к курсовому проектированию по дисциплине «Социальные сети: риски и обеспечение безопасности» для студентов специальности 090303 «Информационная безопасность автоматизированных систем» очной формы обучения

Составители: аспирант Е. А. Шварцкопф, канд. мед. наук О. А. Остапенко

УДК 004.05

Методические указания к курсовому проектированию по дисциплине «Социальные сети: риски и обеспечение безопасности» для студентов специальности 090303 «Информационная безопасность автоматизированных систем» очной формы обучения / ФГБОУ ВПО «Воронежский государственный технический университет»; сост. Е. А. Шварцкопф, О. А. Остапенко. Воронеж, 2015. 21 с.

Методические указания по курсовому проектированию содержат материал, направленный на углубленное изучение лекционного материала и приобретение навыков по оценке риска безопасности социальных сетей, подвергающихся деструктивному воздействию.

Методические указания подготовлены в электронном виде в текстовом редакторе MW-2013 и содержатся в файле Шварцкопф КП СОЦ СЕТИ.pdf.

Табл. 3. Ил. 4. Библиогр.: 4 назв.

Рецензент д-р техн. наук, проф. А. Г. Остапенко

Ответственный за выпуск зав. кафедрой д-р техн. наук, проф. А. Г. Остапенко

Издается по решению редакционно-издательского совета Воронежского государственного технического университета

© ФГБОУ ВПО «Воронежский государственный технический университет», 2015

ВВЕДЕНИЕ

Под социальной информационной сетью (СИС) понимается множество агентов, которые могут вступать во взаимодействие друг с другом. С формальной точки зрения такие сети удобно представлять в виде графов и применять для их анализа математические модели.

Исходя из текущей динамики развития, можно сделать вывод о том, что распространенность сетевого анализа растет, поскольку в настоящий момент происходит глобализация общемировых процессов, прежде всего, в форме сетевизации. Эта динамика непосредственным образом влияет на требования к защите информации в социальных сетях.

Привлекая огромное число пользователей, СИС становятся целью киберпреступников. Возможность обмена сообщениями СИС площадкой текстовыми делает ДЛЯ широкомасштабных spam-атак. Кроме того, проведения последние исследования показали, СИС могут что распространения использоваться ДЛЯ вирусов других вредоносных программ. Отмечается, что причиной появления такой тенденции являются не уязвимости в самих СИС, а повышенная доверчивость пользователей.

На основе вышеизложенного можно сделать вывод об актуальности исследования проблемы социальных сетей с точки зрения повышения защищённости пользователей СИС путём анализа моделей распространения вредоносного риск-модели программного обеспечения построения И информационно-психологического воздействия на пользователей социальных информационных сетей.

Таким образом, курсовая работа предлагает самостоятельную разработку модели, а затем и реализацию алгоритма оценки риска, который служит вспомогательным инструментом для оценки эффективности защиты информации и динамического управления защищенностью социальных сетей.

Данные методические указания по написанию курсовой работы содержат рекомендуемые источники, рекомендации, а также сроки выполнения курсовой работы.

1. ЦЕЛИ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ

Целью курсовой работы является разработка модели и программная реализация алгоритма оценки риска безопасности социальной сети заданной конфигурации. При этом студенты должны познакомиться с архитектурными особенностями социальных сетей, принципами их функционирования и обеспечения безопасности.

При выполнении курсовой работы студенты должны освоить основные подходы к моделированию рисков сети и способы их применения для анализа рисков при решении различных задач: моделирование процесса заражения компьютеров пользователей социальных сетей, моделирование процесса информационно-психологического воздействия на пользователей социальных сетей и др.

Динамичность протекающих процессов самой И архитектуры социальной сети делает задачу адекватного крайне актуальной. Поэтому рисков сети практических оперативного решения задач ПО эффективности применения комплексов мер противодействия угрозам воздействия вредоносного ПО и информационнопсихологического воздействия на пользователей социальных сетей применяется алгоритм оценки риска, который позволяет на практике получать оценки в соответствии с ключевыми характеристиками сети.

Практическая часть курсовой работы ориентирована на разработку программного инструмента для оценки интегрального риска безопасности с учетом ключевых зависимостей в социальной сети заданной конфигурации.

Студентам рекомендуется использовать современные инструментальные средства при создании модели и соответствующей ей программной реализации алгоритма оценки риска, например, Matlab, Octave, R, Python, Gephi, yEd.

2. ТРЕБОВАНИЯ К СОДЕРЖАНИЮ И ОБЪЁМУ КУРСОВОЙ РАБОТЫ

Основные требования к курсовой работе (КР) установлены стандартом предприятия СТП ВГТУ 62-2007. КР состоит из расчетно-пояснительной записки (РПЗ) объёмом от 30 до 50 страниц печатного текста с иллюстративным графическим материалом, размещенным по разделам работы, чертежей, схем.

Пояснительная записка содержит следующие разделы:

- а) титульный лист;
- б) задание на курсовую работу;
- в) лист «Замечания руководителя»;
- г) содержание включает введение, наименование всех разделов, подразделов, пунктов (если они имеют наименование), заключение, список литературы, наименование приложений с указанием номеров страниц, с которых начинаются эти элементы пояснительной записки;
 - д) введение;
 - е) основную часть (исследовательскую) содержащую:
 - формирование иерархической модели элементов сети;
 - заполнение необходимых таблиц соответствия
 - реализация алгоритма оценки;
 - анализ полученных результатов.
 - ж) заключение;
 - з) список литературы;
 - и) приложения (при необходимости).

Также к КР прилагается диск с разработанным ПО и электронным вариантом курсовой работы.

2.1. График выполнения курсовой работы

График выполнения курсовой работы

Таблица 1

т рафик выпол	пспил курсовой расоты
Срок выполнения	Содержание работы
1 – 2-я недели семестра	Выбор задания курсовой работы. Ознакомление с постановкой задачи
3 – 8-я недели семестра	Осмысление задания, изучение подхода к его выполнению, разработка модели социальной сети. Подготовка к программной реализации алгоритма.
9 – 12-я недели семестра	Программная реализация алгоритма и его тестирование
13 – 15-я недели семестра	Оформление пояснительной записки. Окончательная отладка приложения
16 – 17-я недели семестра	Сдача пояснительной записки. Защита курсовой работы

2.2. Последовательность выполнения

Последовательность выполнения, рекомендации по выполнению разделов проекта:

- 1. Содержательный анализ задачи.
- 2. Формализация задачи.
- 2.1. Проанализировать математические модели заражения вредоносным программным обеспечением компьютеров пользователей социальных информационных сетей.

- 2.2.Построить риск-модель информационнопсихологического воздействия на пользователей социальных информационных сетей.
- 2.3. Исследовать разработанную риск-модель в динамике и рассмотреть характер её движения при изменении параметров атаки
- 3. Адаптировать типовой алгоритм решения задачи к текущим условиям. (Описание можно проводить либо в виде блок-схемы, либо на псевдоязыке).
 - 4. Создать реализацию созданного алгоритма.
- 4.1. Описать переменные (как основные, так и промежуточные).
 - 4.2. Реализовать ввод исходных данных и вывод.
 - 4.3. Реализовать полный алгоритм решения.
 - 5. Провести отладку программы.
 - 5.1. Составить контрольный пример.
 - 5.2. Отладить программу.
 - 6. Оформить отчет по курсовому проекту.

2.3. Критерии оценки курсовой работы

Оценка за курсовую работу складывается из оценки за предоставленный отчет, полноту выполненной работы, работоспособность программы, защиту (ответы на вопросы по теме проекта) и составляет от 2 до 5 («неудовлетворительно», «удовлетворительно», «хорошо», «отлично»).

3. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Обзор существующих решений

В настоящее время для построения различных моделей социальных сетей применяют теорию случайных графов. Существует много видов моделей, генерирующих случайные графы, близкие по свойствам к реальным сетям. Их можно разделить по генерируемым графам на несколько основных классов[3,4]:

- 1. Модели случайных графов (модель Эрдёша-Реньи);
- 2. Простейшие модели безмасштабных сетей (модель Боллобаша-Риордана, модель копирования и др.);
- 3. Более гибкие модели безмасштабных сетей (модель Чунг-Лу, модель Янсона- Лучака);
 - 4. Модель стохастических графов Кронекера;

При сравнении моделей основными критериями являются:

- 1. Соответствие свойств генерируемого моделью графа свойствам реальных социальных сетей. Показатели распределения степеней вершин генерируемого моделью графа должны быть близки к экспериментальным. Например, показатели распределения степеней вершин многих соц. сетей меньше 2.
- 2. Гибкость модели, возможность менять ее параметры, такие как показатель.

На данный момент существует несколько программных продуктов для анализа социальных сетей (табл. 2).

Таблица 2 Сводная таблица программных систем и библиотек для проведения анализа социальных сетей

Название	Функционал	Входной формат	Выходной формат	Платформа	Условия распространения
AllegroGraph	База графов. Визуализация RDF	RDF	EDF	Linux, Mac, Windows	Free и Commercial
EgoNet	Анализ эгоцентричных сетей	XML	CSV	Любая система с Java	Open Source
Gephi	Исследование и изменение графов	DOT, GML. GDF, GRAPHML, NET, GEXF, CSV, Database	GDF, GEXF, SVG, PNG	Любая система с Java 1.6 и OpenGL	Open Source (GPL3)
GraphStream	Библиотека работы со статическими и динамическими графами	DGS, DOT, GML, Edge list	DGS, DOT, GML, Images	Любая система с Java	Open Source

Продолжение табл. 2

Название	Функционал	Входной	Выходной формат	Платформа	Условия
		формат			распространения
Graph-tool	Python-модуль	DOT,	DOT, GraphML, BML,	GNU/Linux,	Free (GPL3)
	для анализа и	GraphML	CANON, CMAP, EPS,	MAC	
	визуализации		FIG, GD, GD2, GIF,		
	графов		GTK, ICO, IMAP,		
			CMAPX, ISMAP,		
			JPEG, PDF, PLAIN.		
			PNG, PS, PS2, SVG,		
			SVGZ, TIF, VML,		
			VMLZ, VRML,		
			WBMP XLIB		
Graphviz	Визуализация	DOT	BMP, CANON,	Linux, Mac,	Open Source (CPL)
	графов		CMAP, EPS,FIG, GD,	Windows	
			GD2, GIF, GTK, ICO,		
			IMAP, CMAPX,		
			ISMAP, JPEG, PDF,		
			PLAIN, PNG, PS, PS2,		
			SVG, SVGZ, TIF,		
			VML, VMLZ, VRML,		
			WBMP, XLIB		
sigma.js	Библиотека для	GEXF,	GEXF, XML	Поддержка	Open Source
	визуализация	JSON,		JavaScript,	(MITL)
	графов	XML		HTML5 и	
				WebGL	

Окончание табл. 2

Название	Функционал	Входной	Выходной	Платформа	Условия
		формат	формат		распространения
Mathematica	Анализ графов, расчет статистических данных визуализация	Более 50 форматов	Более 50 форматов	Windows, Mac, Linux	Commerical
	данных, оптимизация, распознавание изображение				
Wolfram Alpha	Анализ графов и временных выборок	Facebook API	Более 20 форматов	Современные браузеры	Free и Commercial

Сравнительный анализ проводился по следующим критериям: функциональность программы или библиотеки, число поддерживаемых входных и выходных форматов, поддерживаемые платформы и условия распространения.

В результате сравнительного анализа была выявлена следующие закономерности:

- Подавляющее большинство ПО предназначены для выполнения на персональном компьютере;
- Они требуют заранее подготовленные данные для исследования (за исключением Wolfram Alpha, который использует Facebook API);
- Большинство систем унифицировано и не имеет специальных опций для анализа именно социальных сетей;
- Менее половины систем сочетают в себе возможности как для визуализации, так и для анализа графов.

Программная реализация алгоритма

Алгоритм оценки риска может быть реализован программно. Перечень технических требований:

- Реализация в виде клиент-серверного приложения;
- Стабильная работа на компьютерах с операционными системами Windows 7/8, Mac OS X, Linux при использовании последних версий браузеров Google Chrome, Mozilla Firefox, Яндекс.Браузер, Орега (число друзей до 1000 человек);
 - Хранение данных в базе данных MySQL;
- Реализация клиента на HTML/CSS с использованием JavaScript с библиотеками с использованием SVG;
- Реализация сервера на PHP, выполняемом на Арасhесервере.

Программа, удовлетворяющая всем вышеперечисленным требованиям, может представлять практическую ценность для исследователей и специалистов по работе с социальными сетями, так как позволит значительно снизить время на сбор, обработку и подготовку данных к анализу.

4. ПРИМЕР ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ

Тема: Клиент-серверное веб-приложение для визуализации и оценки характеристик социального графа пользователя ВКонтакте.

Объектом разработки является клиент-серверное вебприложение для визуализации и расчета характеристик социального графа пользователя сети ВКонтакте.

Целью работы является разработка веб-приложения, которое

- а) обеспечит автоматический сбор социально-демографических данных пользователей сети ВКонтакте;
- б) построит на веб-странице двухмерное представление социального графа друзей указанного пользователя, пригодное для дальнейшего анализа;
- в) вычислит значения характеристик графа, применяемых в ходе анализа социальных сетей.

В ходе данной работе были рассмотрены элементы теории графов, алгоритмы визуализации графов и элементы анализа социальных сетей, применимые для обработки данных пользователей социальной сети ВКонтакте.

В результате выполнения работы было создано вебобеспечивающее автоматическое получение приложение, персональных данных и списков друзей пользователей сети ВКонтакте и строящее на их основе социальный граф, а также визуализацию производящее его В качестве векторного изображения формате SVG И социальных расчет характеристик.

4.1. Особенности реализации программы. Клиент

Клиентская часть веб-приложения выполняет большую часть его функционала, а именно:

• Предоставляет пользователю интерфейс по управлению программой (ввод исходных данных, проверка их

корректности, ведение консольного журнала выполнения программы);

Таблица 3 Описание настроек визуализации

Настройка	Эффект на визуализацию	Диапазон
		допустимых
		значений
Длина пружин	Чем больше длина, тем на	Действительное
	большем расстояния	число в
	вершины графа будут	диапазоне [45;
	расположены друг от друга	500]
Коэффициент	Чем выше, тем дальше друг	Действительное
отталкивания	от друга будут расположены	число в
	вершины графа	диапазоне [-10; -
		0.1]
Максимальные	Чем выше значение, тем	Действительное
колебания	быстрее алгоритм прекратит	число в
покоя	работу(продолжительность	диапазоне
	колебаний графа)	[0.005; 0.5]
Коэффициент	Чем выше, тем меньше	Действительное
упругости	расстояние между вершинами	число в
	и выше частота колебаний	диапазоне
		[0.000001;
		0.00001]
Коэффициент	Чем выше, тем ниже	Действительное
сцепления	амплитуда и частота	число в
	колебаний (граф рисуется	диапазоне
	более плавно)	[0.005; 0.09]
Режим сбора	Скорость получения	Быстрый /
данных	информации о списках	медленный
	друзей пользователей и	
	добавления новых ребер в	
	граф: 25 списков друзей	
	(список ребер инцидентных	
	25 вершинам) в секунду -	
	быстрый режим, 1 список	
	друзей – медленный	

- Формирует и посылает на сервер запрос в зависимости от стадии выполнения (сбор персональных данных главного пользователя, сбор данных его друзей, получение списков друзей);
- Обрабатывает полученные с сервера ответы, динамически обновляя информацию о графе;
- Строит двухмерное представление социального графа;
- Рассчитывает социальные характеристики, пример которых приведен на рис. 1.

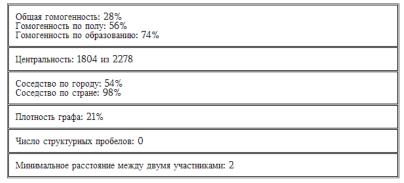


Рис. 1. Рассчитанные характеристики социального графа

4.2. Особенности реализации программы. Сервер

Серверная часть веб-приложения формирует запросы к методам API ВКонтакте, записывает собранные данные в базу данных и возвращает исходные данные о ребрах и вершинах социального графа на клиентскую часть. Для этого реализован PHP-скрипт «dispatcher.php», выполняющий роль диспетчера запросов. Получив и обработав входной запрос, он определяет, какому скрипту будет передано управление [1,2].

4.3. Особенности реализации программы. Визуализация

Визуализация графа происходит на его клиентской части в несколько этапов. Сначала рисуется пользователь, его друзья и связывающие их связи (рис. 2).

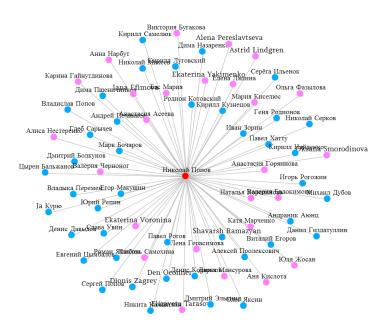


Рис. 2. Строящийся социальный граф в первый момент времени

Голубым цветом обозначаются участники сети мужского пола, розовым – женского, красным – пользователь, для которого строиться граф. Их связи обозначены серыми отрезками. Затем клиент посылает запрос серверу на получение списков друзей участников сети, сервер в свою очередь обращается к АРІ ВКонтакте. Ответ он возвращается на клиентскую часть, которая, обработав его, ищет тех пользователей в полученных списках, которые представлены в построенном социальном графе. Они добавляются в граф (рис. 3).

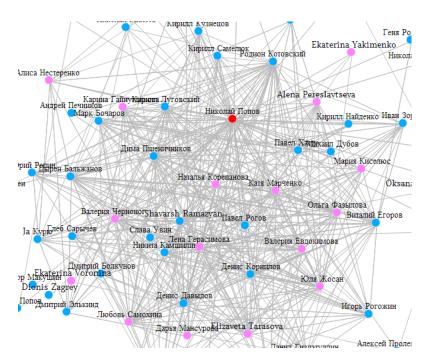


Рис. 3. Масштабированный фрагмент социального графа

Когда все связи добавлены, граф постепенно стабилизируется, достигая минимального энергетического состояния. Когда колебания достигнут порогового значения, они прекратятся, и алгоритм закончит выполнение. После этого можно подробно изучить сформированные кластеры графа, используя режим полноэкранного просмотра и масштабирование отдельных частей графа (рис. 4).

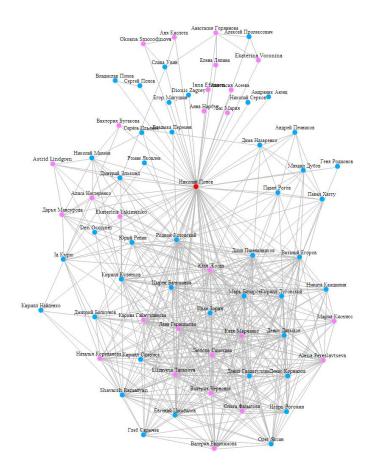


Рис. 4. Построенный социальный граф пользователя

4.4. Особенности реализации программы. Расчет характеристик

Веб-приложении обеспечивает вычисление значений следующих социальных характеристик: гомогенность, центральность, плотность графа, расстояние.

4.5. Технические требования

Для корректной работы веб-приложения может быть использован компьютер, имеющий мышь и характеристики не ниже следующих: однопроцессорный двухъядерный компьютер с 2 ГБ оперативной памяти и 4 ГБ дисковой памяти с выходом в интернет на скорости не менее 2 Mbit/сек.

На клиентских рабочих местах должно быть установлено следующее ПО:

- Операционная система Microsoft Windows Vista/7/8;
- Все подсистемы рассчитаны на использование посредством современных ПК-версий веб-браузеров Google Chrome, Яндекс.Браузер, Mozilla Firefox и Opera, актуальных на 1 апреля 2014 года;
- Для корректной работы необходима поддержка в браузерах SVG-графики, AJAX-запросов и скриптов языка Javascript.

Само веб-приложение должно быть размещено на хостинге, имеющем стандартный набор параметров для обеспечения работы веб-сайтов с PHP-скриптами и СУБД MySQL.

5. ЗАДАНИЯ КУРСОВОЙ РАБОТЫ

5.1. Обшая часть

Выполнить программную реализацию инструмента для выполнения анализа эффективности применения комплексов мер противодействия угрозам воздействия вредоносного ПО и информационно-психологического воздействия на пользователей социальных сетей.

5.2. Индивидуальные варианты заданий

Используя те же, что и в рассмотренном примере социально-демографических данных пользователей сети, разработать:

- Реализации возможности построения социальных графов пользователей других онлайн-социальных сетей;
- Оптимизация работы программы при пятизначном числе вершин;
- Разработка функционала для выявления и анализа кластеров социального графа;
- Внедрение опции добавления в социальный граф новых пользователей.

5.3. Контрольные вопросы

- 1. Опишите с кибернетических позиций 2 модели управления обществом иерархическую и гомеостатическую.
- 2. Назовите ученых и исследователей, внесших значимый вклад в теорию и практику анализа социальных сетей и группового поведения.
 - 3. Назовите способы описания сети и параметры сети.
 - 4. Что такое социальная сеть? Способы ее описания.
- 5. Укажите отличие классических и онлайновых социальных сетей?

- 6. Что такое кластеризация сети в пространстве параметров?
- 7. Применимо ли понятие энтропия к анализу сетей Одноклассники и ВКонтакте?
- 8. Согласно принципу Пригожина Онзагера открытая система стремится наикратчайшим путем к состоянию с наибольшим производством энтропии. Применимо ли к анализу СИС?
- 9. Назовите технологии, которые можно отнести к социально-ориентированным.
- 10. Какими бы критериями вы оценили обычную коммерческую сеть контактов, сеть профессионалов и социально-ориентированный проект?
- 11. Что такое социальная сеть и какие группы сетей вы знаете?
- 12. Какие системы и сети называются комплексными (масштабно инвариантными)?
 - 13. Приведите примеры комплексных сетей.
 - 14. Приведите примеры распределения Парето.
- 15. Опишите модель предпочтительного присоединения.
 - 16. Объясните понятие «малого мира».
 - 17. Опишите различные виды центральности узлов.
 - 18. Опишитеалгоритм PageRank.
 - 19. Дайте определение сетевого сообщества.
 - 20. В чем отличие моделей SIS/SIR?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Карпеев, Д. О. Методическое и алгоритмическое обеспечения расчета распределенных систем на основе параметров рисков их компонентов [Текст] / Д. О. Карпеев, Г. А. Остапенко // Информация и безопасность. — 2010. — Т. 13. — Вып. 3. — С. 373-381.

- 1. Карпеев, Д. О. К вопросу о построении систем мониторинга сервисов социальных сетей в Интернет [Текст] / Д. О. Карпеев, П. А. Маслихов // Информация и безопасность. 2010. Т. 13. Вып. 3. С. 451-454.
- 2. Модели конформного поведения. Ч. 2. Математические модели [Текст] / А. В. Батов, В. В. Бреер, Д. А. Новиков, А. Д. Рогаткин // Проблемы управления. 2014. N 6. С. 45-51.
- 3. Губанов, Д. А. Социальные сети: модели информационного влияния, управления и противоборства [Текст] / Д. А. Губанов, А. Г. Чхартишвили; под ред. чл.-корр. РАН Д. А. Новикова. М.: Издательство физикоматематической литературы, 2010. 228 с.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	1
1. ЦЕЛИ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ	2
2. ТРЕБОВАНИЯ К СОДЕРЖАНИЮ И ОБЪЁМУ	
КУРСОВОЙ РАБОТЫ	3
2.1. График выполнения курсовой работы	4
2.2. Последовательность выполнения	4
2.3. Критерии оценки курсовой работы	5
3. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ	6
4. ПРИМЕР ВЫПОЛНЕНИЯ КУРСОВОЙ РАБОТЫ	11
4.1. Особенности реализации программы. Клиент	11
4.2. Особенности реализации программы. Сервер	13
4.3. Особенности реализации программы. Визуализация	14
4.4. Особенности реализации программы. Расчет	
характеристик	16
4.5. Технические требования	17
5. ЗАДАНИЯ КУРСОВОЙ РАБОТЫ	18
5.1. Общая часть	18
5.2. Индивидуальные варианты заданий	18
5.3. Контрольные вопросы	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к курсовому проектированию по дисциплине «Социальные сети: риски и обеспечение безопасности» для студентов специальности 090303 «Информационная безопасность автоматизированных систем» очной формы обучения

Составители: Шварцкопф Евгения Андреевна Остапенко Ольга Александровна

В авторской редакции

Подписано к изданию 27.04.2015. Уч.-изд. л. 1,3.

ФГБОУ ВПО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14