МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета В.А. Небольсин

«30» августа 2017 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Основы сверхпроводимости»

Направление подготовки 14.03.01 ЯДЕРНАЯ ЭНЕРГЕТИКА И ТЕПЛОФИЗИКА

Профиль Техника и физика низких температур

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2017

Автор программы

<u>из</u> /Шушлебин И.М./

Заведующий кафедрой Физики твердого тела

/Калинин Ю.Е./

Руководитель ОПОП

/Калядин О.В./

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

обеспечение фундаментальными знаниями в области физики сверхпроводящего состояния твердого тела (понятие сверхпроводимости; основные закономерности; влияние внешних условий на сверхпроводимость; термодинамика сверхпроводников) и получение практических навыков в области физики сверхпроводников

1.2. Задачи освоения дисциплины

- освоение фундаментальных представлений об особом состоянии некоторых твердых тел после охлаждения их до температуры ниже критической;
- изучение основ фундаментальной теории БКШ, ее связь с происходящей перестройкой в подсистеме электронов, влияние кристаллической решетки;
- усвоение связи между технологией создания сверхпроводников их критическими параметрами и свойствами с целью управления последними.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Основы сверхпроводимости» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Основы сверхпроводимости» направлен на формирование следующих компетенций:

ПК-2 - готовностью к участию в проведении физического и численного эксперимента, к подготовке соответствующих экспериментальных стендов

ПКВ-6 - способностью использовать полученные специализированные знания для проектирования, создания и эксплуатации разнообразных установок низкотемпературной техники

ПКВ-7 - готовностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способен привлечь для их решения соответствующий физико-математический аппарат

Компетенция	Результаты обучения, характеризующие сформированность компетенции			
ПК-2	Знать методы измерения и определения основных свойств сверхпроводников			
	Уметь экспериментально определять основные свойства сверхпроводников			
	Владеть навыками экспериментального определения основных свойств сверхпроводников			
ПКВ-6	Знать физические основы сверхпроводимости, необходимые для проектирования, создания и эксплуатации разнообразных сверхпроводящих устройств			

	Уметь использовать физические основы сверхпро-				
	водимости при проектировании, создании и эксплу-				
	атации разнообразных сверхпроводящих устройств				
	Владеть навыками использования физических основ				
	сверхпроводимости при проектировании, создании				
	и эксплуатации разнообразных сверхпроводящих				
	устройств				
ПКВ-7	Знать физико-математический аппарат электродина-				
	мики				
	Уметь использовать для решения задач связанных с				
	практическим применением сверхпроводимости и				
	возникающих в ходе профессиональной деятельно-				
	сти физико-математический аппарат электродина-				
	мики				
	Владеть навыками использования физико-математи-				
	ческого аппарата электродинамики для решения за-				
	дач возникающих в ходе профессиональной дея-				
	тельности и связанных с практическим примене-				
	нием сверхпроводимости				

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Основы сверхпроводимости» составляет 6 з.е.

Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Виды учебной работы		Семес	стры
Биды учеоной расоты	часов	5	6
Аудиторные занятия (всего)	90	54	36
В том числе:			
Лекции	36	18	18
Практические занятия (ПЗ)	18	18	-
Лабораторные работы (ЛР)	36	18	18
Самостоятельная работа	90	18	72
Часы на контроль	36	1	36
Виды промежуточной аттестации - экзамен,	+	+	+
зачет	1	•	•
Общая трудоемкость:			
академические часы	216	72	144
зач.ед.	6	2	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	СРС	Всего,
1	Физические свойства материалов при низких температурах	Общие сведения о сверхпроводниках. Свойство газов при низких температурах. Открытие сверхпроводимости. Развитие теории сверхпроводимости. Применение сверхпроводников. Ускорительные магниты. ЯМР — томографы. Применение низкотемпературных сверхпроводников в энергетике Применение высокотемпературных сверхпроводников	4	6	6	6	30
2	Классическая электродинамика и термодинамика сверхпроводников	Сопротивление сверхпроводников. Эффект Мейснера. Глубина проникновения магнитного поля в сверхпроводник. Классическая электродинамика сверхпроводников. Теория Лондонов. Двухжидкостная модель сверхпроводников. Уравнение Лондонов Иравнение Лондонов Иравнение Лондонов Иравнение Лондонов Иравнения магнитного поля в сверхпроводник. Полная система уравнений сверхпроводника. Кинетическая индуктивность. Квантование магнитного потока в сверхпроводниках. Обобщенный импульс заряженной частицы в магнитном поле. Квант магнитного потока. Основные принципы термодинамики. Термодинамика перехода в сверхпроводящее состояние. Связь между магнитными и тепловыми свойствами сверхпроводника. Теплоемкость и теплопроводность сверхпроводника.	6	6	6	6	32
3	Пиппарда. Поверхностная энергия сверхпроводников.	Длина когерентности сверхпроводников, параметр Гинзбурга – Ландау. Поверхностная энергия сверхпроводников. Сверхпроводники 1-го и 2-го рода. Промежуточное состояние в сверхпроводниках 1-го рода. Промежуточное состояние цилиндрического сверхпроводника с током. Намагничивание сверхпроводников 1-го рода. Общие свойства сверхпроводников 2-го рода. Магнитное поле одиночного вихря. Смешанное состояние сверхпроводников 2-го рода. Проникновение вихрей в сверхпроводник. Сила взаимодействия между вихрями. Первое критическое поле. Второе критическое поле. Поверхностная сверхпроводимость. Намагничивание сверхпроводников 2-го рода.	6	6	6	6	32
4	Теории сверхпроводимости	Теория сверхпроводимости Гинзбурга-Ландау. Общие свойства квантовых жидкостей. Квантовые свойства электронов проводимости в металле. Квантовые свойства ионной решетки металлов. Экспериментальные данные, важные для построения микроскопической теории сверхпроводимости. Кристаллографический эксперименты. Изотопический эффект. Коэффициент отражения электромагнитного излучения от поверхности сверхпроводника. Электрон – фононное взаимодействие. Куперовские пары.	6		6	24	28

			1			
	Свойства основного состояния сверх-					
	проводника. Энергетическая щель. Не-					
	затухающий ток в сверхпроводниках.					
5 Сверхпроводники 2-го рода в то-	Силы, действующая на вихревую нить.					
ковом состоянии	Течение потока. Пиннинг. Энергия					
	вихря в сверхпроводящей пластине с					
	током. Взаимодействие вихря с нор-					
	мальным включением. Теория крити-	6		6	24	28
	ческого состояния Кима – Андерсона.					
	Модель критического состояния Бина					
	– Лондона. Модель критического со-					
	стояния Кима.					
6 Высокотемпературные сверх-	Открытие высокотемпературной					
проводники	сверхпроводимости. История откры-					
	тия Кристаллическая структура. Осо-					
	бенности кристаллической структуры.					
	Химическая сложность и химические					
	сверхпроводники. Особенности физи-					
	ческих свойств Особенности сверх-					
	проводящих свойств. Фазовые соотно-					
	шения. Катионная нестехиометрия.					
	Висмутовые ВТСП, ртутники, геомет-					
	рическая стабильность. Анионная не-	8		6	24	30
	стехиометрия. "Химическое давление"					
	и гофрировка структуры, а также рас-					
	слаивание с образованием нанофлук-					
	туация состава. Диаграммы Time-					
	Temperature-Transformation. Методы					
	синтеза ВТСП-фаз и получение ВТСП-					
	материалов. Ленты в металлической					
	оболочке. Тонкие пленки. Крупнокри-					
	сталлическая керамика. Монокри-					
	сталлы. Применение ВТСП.					
		36	18			

5.2 Перечень лабораторных работ

- Изучение резистивного сверхпроводящего перехода
- Изучение индуктивного сверхпроводящего перехода
- Влияние силы транспортного тока на резистивный переход
- Влияние внешнего магнитного поля на резистивный переход
- Приготовление смеси порошков для изготовления иттриевого металлооксида и его синтез
 - Размол иттриевого металлооксида, прессование и спекание ВТСП

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характе- ризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ПК-2	Знать методы измерения и определения основных свойств сверхпроводников	Активная работа на практических занятиях	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение ра- бот в срок, преду- смотренный в ра- бочих программах
	Уметь экспериментально определять основные свойства сверхпроводников	Решение стандартных практических задач	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение ра- бот в срок, преду- смотренный в ра- бочих программах
	Владеть навыками экспериментального определения основных свойств сверхпроводников	Решение прикладных за- дач в конкретной предмет- ной области	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПКВ-6	Знать физические основы сверхпроводимости, необходимые для проектирования, создания и эксплуатации разнообразных сверхпроводящих устройств	Активная работа на практических занятиях	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь использовать физические основы сверхпроводимости при проектировании, создании и эксплуатации разнообразных сверхпроводящих устройств	Решение стандартных практических задач	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками использования физических основ сверхпроводимости при проектировании, создании и эксплуатации разнообразных сверхпроводящих устройств	Решение прикладных за- дач в конкретной предмет- ной области	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение работ в срок, предусмотренный в рабочих программах
ПКВ-7	• •	Активная работа на практических занятиях	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Уметь использовать для решения задач связанных с практическим применением сверхпроводимости и возникающих в ходе профессиональной деятельности физико-математический аппарат электродинамики	Решение стандартных практических задач	Выполнение ра- бот в срок, преду- смотренный в ра- бочих програм- мах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть навыками использования физико-математического аппарата электродинамики для решения задач возникающих в ходе профессиональной деятельности и связанных с практическим применением сверхпроводимости	Решение прикладных за- дач в конкретной предмет- ной области	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 5, 6 семестре для очной формы обучения по двух/четырехбалльной системе:

«зачтено»

«не зачтено»

Компе-	Результаты обучения, характе-	Критерии		
тенция	ризующие сформированность компетенции	оценивания	Зачтено	Не зачтено
ПК-2	Знать методы измерения и определения основных свойств сверхпроводников	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
	Уметь экспериментально определять основные свой- ства сверхпроводников	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
	Владеть навыками экспериментального определения основных свойств сверхпроводников	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
ПКВ-6	Знать физические основы сверхпроводимости, необходимые для проектирования, создания и эксплуатации разнообразных сверхпроводящих устройств	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
	Уметь использовать физические основы сверхпроводимости при проектировании, создании и эксплуатации разнообразных сверхпроводящих устройств	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
	Владеть навыками использования физических основ сверхпроводимости при проектировании, создании и эксплуатации разнообразных сверхпроводящих устройств	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
ПКВ-7	Знать физико-математиче- ский аппарат электродина- мики	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
	Уметь использовать для решения задач связанных с практическим применением сверхпроводимости и возникающих в ходе профессиональной деятельности физико-математический аппарат электродинамики	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов
	Владеть навыками использования физико-математического аппарата электродинамики для решения задач возникающих в ходе профессиональной деятельности и связанных с практическим применением сверхпроводимости	Тест	Выполнение теста на 60-100%	В тесте менее 60% правильных ответов

ИЛИ

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ПК-2	Знать методы измерения и определения основных свойств сверхпроводников	Тест	Выполнение теста на 85- 100%	Выполнение теста на 70- 85%	Выполнение теста на 50- 70%	В тесте менее 50% правильных ответов
	Уметь экспериментально определять основные свойства сверхпроводников	Тест	Выполнение теста на 85-100%	Выполнение теста на 70- 85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов
	Владеть навыками экспериментального определения основных свойств сверхпроводников	Тест	Выполнение теста на 85-100%	Выполнение теста на 70- 85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов
ПКВ-6	Знать физические основы сверхпроводимости, необходимые для проектирования, создания и эксплуатации разнообразных сверхпроводящих устройств	Тест	Выполнение теста на 85- 100%	Выполнение теста на 70-85%	Выполнение теста на 50- 70%	В тесте менее 50% правильных ответов
	Уметь использовать физические основы сверхпроводимости при проектировании, создании и эксплуатации разнообразных сверхпроводящих устройств	Тест	Выполнение теста на 85-100%	Выполнение теста на 70- 85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов
	Владеть навыками ис- пользования физиче- ских основ сверхпрово- димости при проектиро- вании, создании и экс- плуатации разнообраз- ных сверхпроводящих устройств	Тест	Выполнение теста на 85-100%	Выполнение теста на 70- 85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов
ПКВ-7	Знать физико-математический аппарат электродинамики	Тест	Выполнение теста на 85- 100%	Выполнение теста на 70- 85%	Выполнение теста на 50- 70%	В тесте менее 50% правильных ответов
	Уметь использовать для решения задач связанных с практическим применением сверхпроводимости и возникающих в ходе профессиональной деятельности физико-математический аппарат электродинамики	Тест	Выполнение теста на 85-100%	Выполнение теста на 70-85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов
	Владеть навыками использования физико-математического аппарата электродинамики для решения задач возникающих в ходе профессиональной деятельности и	Тест	Выполнение теста на 85- 100%	Выполнение теста на 70-85%	Выполнение теста на 50-70%	В тесте менее 50% правильных ответов

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - **7.2.1 Примерный перечень заданий для подготовки к тестированию** (минимум 10 вопросов для тестирования с вариантами ответов)
- 7.2.2 Примерный перечень заданий для решения стандартных задач

(минимум 10 вопросов для тестирования с вариантами ответов)

7.2.3 Примерный перечень заданий для решения прикладных задач (минимум 10 вопросов для тестирования с вариантами ответов)

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Общие сведения о сверхпроводниках.
- 2. Свойство газов при низких температурах.
- 3. Открытие сверхпроводимости.
- 4. Развитие теории сверхпроводимости.
- 5. Применение сверхпроводников.
- 6. Ускорительные магниты.
- 7. ЯМР томографы.
- 8. Применение низкотемпературных сверхпроводников в энергетике Применение высокотемпературных сверхпроводников
- 9. Сопротивление сверхпроводников.
- 10. Эффект Мейснера.
- 11. Глубина проникновения магнитного поля в сверхпроводник.
- 12. Классическая электродинамика сверхпроводников.
- 13. Теория Лондонов.
- 14. Двухжидкостная модель сверхпроводников.
- 15. Уравнение Лондонов.
- 16. Уравнение Лондонов для векторного потенциала.
- 17. Проникновения магнитного поля в сверхпроводник.
- 18.Полная система уравнений сверхпроводника.
- 19. Кинетическая индуктивность.
- 20. Квантование магнитного потока в сверхпроводниках.
- 21.Обобщенный импульс заряженной частицы в магнитном поле.
- 22. Квант магнитного потока.
- 23.Основные принципы термодинамики.
- 24. Термодинамика перехода в сверхпроводящее состояние.
- 25.Связь между магнитными и тепловыми свойствами сверхпроводника.
- 26. Теплоемкость и теплопроводность сверхпроводника.
- 27. Длина когерентности сверхпроводников, параметр Гинзбурга Ландау.
- 28. Поверхностная энергия сверхпроводников.
- 29. Сверхпроводники 1-го и 2-го рода.

- 30. Промежуточное состояние в сверхпроводниках 1-го рода.
- 31. Промежуточное состояние цилиндрического сверхпроводника с током.
- 32. Намагничивание сверхпроводников 1-го рода.
- 33. Общие свойства сверхпроводников 2-го рода.
- 34. Магнитное поле одиночного вихря.
- 35.Смешанное состояние сверхпроводников 2-го рода.
- 36. Проникновение вихрей в сверхпроводник.
- 37.Сила взаимодействия между вихрями.
- 38. Первое критическое поле.
- 39. Второе критическое поле.
- 40. Поверхностная сверхпроводимость.
- 41. Намагничивание сверхпроводников 2-го рода.

7.2.5 Примерный перечень заданий для подготовки к экзамену

- 1. Теория сверхпроводимости Гинзбурга-Ландау.
- 2. Общие свойства квантовых жидкостей.
- 3. Квантовые свойства электронов проводимости в металле.
- 4. Квантовые свойства ионной решетки металлов.
- 5. Экспериментальные данные, важные для построения микроскопической теории сверхпроводимости.
- 6. Кристаллографический эксперименты.
- 7. Изотопический эффект.
- 8. Коэффициент отражения электромагнитного излучения от поверхности сверхпроводника.
- 9. Электрон фононное взаимодействие.
- 10. Куперовские пары.
- 11. Свойства основного состояния сверхпроводника.
- 12. Энергетическая щель.
- 13. Незатухающий ток в сверхпроводниках.
- 14.Силы, действующая на вихревую нить.
- 15. Течение потока.
- 16.Пиннинг.
- 17. Энергия вихря в сверхпроводящей пластине с током.
- 18.Взаимодействие вихря с нормальным включением.
- 19. Теория критического состояния Кима Андерсона.
- 20. Модель критического состояния Бина Лондона.
- 21. Модель критического состояния Кима.
- 22.Открытие высокотемпературной сверхпроводимости.
- 23. История открытия Кристаллическая структура.
- 24.Особенности кристаллической структуры.
- 25. Химическая сложность и химические сверхпроводники.
- 26.Особенности физических свойств Особенности сверхпроводящих свойств.
- 27. Фазовые соотношения.
- 28. Катионная нестехиометрия.

- 29. Висмутовые ВТСП, ртутники, геометрическая стабильность.
- 30. Анионная нестехиометрия.
- 31. "Химическое давление" и гофрировка структуры, а также расслаивание с образованием нанофлуктуация состава.
- 32. Диаграммы Time-Temperature-Transformation.
- 33. Методы синтеза ВТСП-фаз и получение ВТСП-материалов.
- 34. Ленты в металлической оболочке.
- 35. Тонкие пленки.
- 36. Крупнокристаллическая керамика.
- 37. Монокристаллы.
- 38. Применение ВТСП.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 10 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом, правильно решенная задача оценивается в 2 балла. Максимальное количество набранных баллов — 30.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 15 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 15 до 20 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 21 до 25 баллов.
- 4. Оценка «Отлично» ставится, если студент набрал от 26 до 30 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Физические свойства материалов при низких температурах	ПК-2, ПКВ-6, ПКВ -7	Тест, устный опрос, защита лабораторных работ, зачет
2	Классическая электродинамика и термодинамика сверхпроводников	ПК-2, ПКВ-6, ПКВ -7	Тест, устный опрос, за- щита лабораторных ра- бот, зачет
3	Нелокальная электродинамика Пиппарда. Поверхностная энергия сверхпроводников.	ПК-2, ПКВ-6, ПКВ -7	Тест, устный опрос, за- щита лабораторных ра- бот, зачет
4	Сверхпроводники 1-го и 2-го рода	ПК-2, ПКВ-6, ПКВ -7	Тест, устный опрос, защита лабораторных работ, экзамен

5	Теории сверхпроводимости	ПК-2, ПКВ-6, ПКВ -7	Тест, устный опрос, защита лабораторных работ, экзамен
6	Сверхпроводники 2-го рода в токовом состоянии	ПК-2, ПКВ-6, ПКВ -7	Тест, устный опрос, защита лабораторных работ, экзамен

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- Лыков С.Н. Сверхпроводимость полупроводников: Учеб. пособие / Под общ .ред. В.И.Ильина, А.Я.Шика. СПб.: Наука , 2001. 104 с
 - Гинзбург В.Л. Сверхпроводимость. М.: Педагогика, 1990. 112 с.
- Вонсовский С.В. Сверхпроводимость переходных металлов, их сплавов и соединений. Москва: Наука, 1977. 383 с.
- Буккель В. Сверхпроводимость: Основы и приложения / Пер. с нем. Ю. А. Башкирова. М.: Мир, 1975. 366 с.
- Милошенко В.Е. Словарь терминов технической сверхпроводимости : Учеб. пособие. Воронеж: ФГБОУ ВПО "Воронежский государственный технический университет", 2011. 84 с. 66-31
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
 - SMath Studio

- Mathcad
- Advanced Grapher
- Microsoft Windows 10
- Microsoft Office 2013/2007
- Refprop 8.0
- https://elibrary.ru
- https://cchgeu.ru

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой

Учебная лаборатория физики низких температур, включающая: стенды для выполнения лабораторных работ; оборудование, инструменты, материалы необходимые для осуществления операции развития практических навыков; датчики для работы и проведения измерений.

Дисплейный класс, оснащенный компьютерными программами для проведения практических занятий

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Основы сверхпроводимости» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета термодинамических и электродинамических свойств сверхпроводников. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с конспек-
занятие	том лекций, подготовка ответов к контрольным вопросам, про-

	OLOTH POVOVOVANIANOŠ TAKTOPOTVANI I POGRATIVANIA SVITAS
	смотр рекомендуемой литературы. Прослушивание аудио- и видео-
	записей по заданной теме, выполнение расчетно-графических зада-
	ний, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретиче-
	ские знания, полученные на лекции при решении конкретных за-
	дач. Чтобы наиболее рационально и полно использовать все воз-
	можности лабораторных для подготовки к ним необходимо: сле-
	дует разобрать лекцию по соответствующей теме, ознакомится с
	соответствующим разделом учебника, проработать дополнитель-
	ную литературу и источники, решить задачи и выполнить другие
	письменные задания.
Самостоятельная	Самостоятельная работа студентов способствует глубокому усвое-
работа	ния учебного материала и развитию навыков самообразования. Са-
	мостоятельная работа предполагает следующие составляющие:
	- работа с текстами: учебниками, справочниками, дополнительной
	литературой, а также проработка конспектов лекций;
	- выполнение домашних заданий и расчетов;
	- работа над темами для самостоятельного изучения;
	- участие в работе студенческих научных конференций, олимпиад;
	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически,
промежуточной	в течение всего семестра. Интенсивная подготовка должна
аттестации	начаться не позднее, чем за месяц-полтора до промежуточной атте-
	стации. Данные перед зачетом, экзаменом три дня эффективнее
	всего использовать для повторения и систематизации материала.