МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан факультета В.А. Небольсин «30»августа2017г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Радиотехнические системы

Закреплена за кафедрой: Радиоэлектронные устройства и системы
Направление подготовки (специальности): 11.03.01 Радиотехника
Профиль: Радиотехнические средства передачи, приема и обработки сигналов .
Часов по УП: 180; Часов по РПД: 180;
Часов по УП (без учета часов на экзамены): 144; Часов по РПД: 144;
Часов на самостоятельную работу по УП: 96 (53%);
Часов на самостоятельную работу по РПД: 96 (53%)
Общая трудоемкость в ЗЕТ: 5;
Виды контроля в семестрах (на курсах): Экзамены - 8; Зачеты - 0; Курсовые проекты - 0;
Курсовые работы - 8.
Форма обучения: очная;
Срок обучения: нормативный.

Распределение часов дисциплины по семестрам

Вид		№ семестров, число учебных недель в семестрах																
	1	/	2	/ 18	3	/ 18	4 /	/ 18	5	/ 18	6	/ 18	7	/ 18	8 /	12	Итог	O
занятий	УП	РП	УП	РПД	УП	РПД	УП	РПД	УП	РПД	УП	РПД	УП	РПД	УП	РПД	УΠ	РПД
Лекции			1												24	24	24	24
Лабораторные															24	24	24	24
Практические																		
Ауд. занятия															48	48	48	48
Сам. работа															96	96	96	96
экзамен															36	36	36	36
Итого															180	180	180	180

Сведения о ФГОС, в соответствии с которым разработана рабочая программа дисциплины (модуля) — 11.03.01 «Радиотехника» — утвержден приказом Министерства образования и науки Российской Федерации от 06 марта 2015 г. № 179

Программу составил:	1	к.т.н. Володько А.В.	
	(подпись,	ученая степень, ФИО)	
Рецензент (ы):	Donf	р.т.н. Токареви	1.6.
Рабочая программа дисциг	ілины составле	на на основании учеб	ного плана
подготовки бакалавров по	направлению	11.03.01 Радиотехни	<u>ка,</u> профиль
Радиотехнические средств	а передачи, при	иема и обработки сигн	алов.
		•	
Рабочая программа устройств и система	обсуждена на	заседании кафедры	радиоэлектронных
протокол №от2	2 <i>9.08</i> 2017 г	`.	
Зав. кафедрой РЭУС	SA	Ю.С. Балаг	ШОВ

цели освоения дисциплины

1.1	Цель изучения дисциплины — основной целью преподаваемой дисциплины является изучение студентами основ теории и методов построения основных типов РТС, изучения состава и принципов работы РТС, их роли в решении гражданских и оборонных задач, а также формирование навыков расчета основных параметров радиотехнических систем передачи информации .
1.2	Для достижения цели ставятся задачи:
1.2.1	изучение назначение назначения и принципов работы основных типов РТС;
1.2.2	изучение основных принципов и предельных соотношений теории информации применительно совершенствования систем передачи информации;
1.2.3	ознакомление студентов с основными принципами радиолокационных и радионавигационных систем;
1.2.4	изучение методики эскизного расчета систем передачи информации различных типов;

1. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Цикл (раздел) Б1.Б	код дисциплины в УП: Б1.Б.25							
Профессиональный цикл								
2.1 Требования к предварительной по	одготовке обучающегося							
Для успешного освоения дисципли	ны студент должен иметь базовую подготовку по							
физике и математике в пределах	программы средней школы. а также освоения							
специальных дисциплин «Математ	ика Б2.Б.1 », «Физика Б2.Б.2», «», «», «», «», «», «»,							
ОК-7 ОПК-1 ОПК-2 ОПК-5	Математика Б2.Б.1							
ОПК-1 ОПК-2	Физика Б2.Б.2							
ПВК-8	Статистическая теория систем Б2.В.ОД.8							
ОПК-5 ОПК-7 ПВК-16	Электроника Б1.Б15							
ОПК-2	Электродинамика и распространение							
	радиоволн Б1.Б.16							
ОПК-3 ПВК-18 ПВК-19	Радиотехнические цепи и сигналы Б1.Б.17							
ОПК-3 ПК-1	Цифровые устройства и микропроцессоры							
	Б1.Б.19							
2.2 Дисциплины и практики, для которых освоение данной дисциплины (модуля)								
необходимо как предшествующее								
Так как дисциплина изучает	гся в последнем (8-ом) семестре обучения, то							
последующих дисциплин нет								

2. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

ОПК-5	пособностью использовать основные приемы обработки и								
	представления экспериментальных данных								
Знает:									
Принципы фун	нкционирования основных типов радиотехнических систем								
Умеет:									
Применять .методы обработки экспериментальных данных в процедурах обнаружения и различения сигналов									
Владеет:									
базовыми мето	дами проектирования радиотехнических систем передачи информации.								

В результате освоения дисциплины обучающийся должен

3.1	Знать:
3.1.1	основные принципы работы систем передачи информации;
3.1.2	основные принципы работы радиолокационных систем;
3.1.3	основные принципы работы радионавигационных систем;
3.1.4	Основные соотношения теории информации применительно систем передачи информации;
3.2	Уметь:
3.2.1	осуществлять эскизное проектирование радиотехнических систем передачи информации;
3.2.2	решать типовые прикладные задачи радиотехнических систем;
3.2.3	анализировать технические задания и применять полученные знания пи запуске и наладке радиотехнических систем.
3.3	Владеть:
3.3.1	методами эскизного проектирования и оценки параметров радиотехнических систем;
3.3.2	навыками технического структурного анализа систем связи .

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

				Вид учебной нагрузки и их						
				Tľ	рудоемкость в часах					
№ П./п	Наименование раздела дисциплины	Семестр	Неделя семестра	Лекции	Практические занятия	Лабораторные. работы	CPC	Всего часов		
1	Общие сведения о РТС. Представление	8	1	2		4	16	22		
	сигналов и помех. Радиолокационные и									
2	радионавигационные системы	8	2-8	10		8	16	34		
3	Радиосистемы передачи информации	8	9-10	4		12	16	32		
4	Радиосистемы управления	8	11-12	2			16	18		
5	Системы разрушения информации	8	13-14	2			16	18		
6	Методы проектирования РТС	8	15-18	4			16	20		
	Итого			24		24	96	144		

4.1 Лекции

Неделя семестра	Тема и содержание лекции	Объем часов	В том числе, в интерактивной форме (ИФ)			
	8 семестр	24				
1. Обш	1. Общие сведения о РТС. Представление сигналов и помех					
1	Общие сведения о РТС. Основные определения, классификация, обобщенная схема, параметры и показатели качества РТС Самостоятельное изучение Преставление сигналов и помех, сигналы— переносчики информации и информационные (управляющие) процессы (2 ч)	2				
2. Ради	олокационные и радионавигационные системы	10				
3	Физические основы и классификация РЛС Физические основы радиолокационных и радионавигационных измерений. Виды радиолокации и классификация РЛ систем. Методы определения местоположения в пространстве.	2	4			
5	Свойства локационных целей Отражающие свойства и модели радиолокационных целей (РЛЦ). Статистические модели РЛЦ и характеристики отраженного сигнала	2	4			
7	Дальность действия и особенности РНС и РЛС Дальность радиообнаружения РЛС и РНС. Влияние условий распространения радиоволн и подстилающей поверхности на дальность действия РТС. Обзор пространства и поиск сигналов. Методы обзора пространства. Методы измерения дальности и скорости в РЛС и РНС. Самостоятельное изучение. Точность и разрешающая способность	2	2			

	при импуш спом пастотном и фазором мото тох моморомуй		
	при импульсном, частотном и фазовом методах измерений.		
	Ознакомление с принципом работы индикатора кругового обзора и		
	радиолокационной станцией РБП. Методы защиты от помех.		
	Селекция сигналов по параметрам (2 час).		
	Радионавигационные системы Системы позиционной навигации. Фазовые и импульсно —		
9	фазовые РНС. Многозначность измерений. Спутниковые РНС.		
	Структура сигнала и аппаратура потребителя	2	2
	Самостоятельное изучение. Основные функциональные схемы		
	измерителей угловых координат (2 час).		
	Бортовые РТС измерения параметров полета ЛА		
	Автономные РТС измерения параметров полета ЛА,		
11	мониторинга среды и навигации. Принципы построения счисления	2	
	пути и систем навигации по геофизическим полям		
3 Роди		4	
3. 1 ади	осистемы передачи информации	7	
	Основные принципы и виды РТС СПИ Общие сведения об РТС ПИ. Классификация и основные		
12	показатели РТС ПИ Цифровые методы передачи и приема	2	
14	непрерывных сообщений. Методы уплотнения и разделения каналов	<i>_</i>	
	связи.		
	Цифровые РТС СПИ		
	Цифровые ГТС СПИ Цифровые многоканальные РТС ПИ Основы теории линейного		
	разделения каналов. Примеры линейно независимых сигналов.		
	Линейные и нелинейные методы уплотнения. Частотный, фазовый и		
13	временной методы.	2	
	<u>Самостоятельное изучение</u> . Разделение каналов по форме	_	
	сигналов . Импульсно – кодовая модуляция. Кодовое разделение		
	каналов Комбинационное и мажоритарное виды уплотнения каналов.		
	Оценка их помехоустойчивости (2 час)		
4. Ради	осистемы управления (РСУ).	2	
, ,	Основные принципы и виды РТУ		
	Системы следящего радиоуправления как замкнутые системы		
1 4	автоматического регулирования Системы самонаведения.	2	
14	<u>Самостоятельное изучение</u> Радиотехнические звенья РСУ и	2	
	их модели. Системы командного радиоуправления. Автономное		
	радиоуправление. (6 час).		
5. Сис т	гемы разрушения информации	2	
	Радиоэлектронная борьба		
	Радиотехническая разведка. Методы радиопротиводействия и		
15	виды организованных помех.	2	
13	<u>Самостоятельное изучение.</u> Методы и принципы постановки	2	
	широкополосных и прицельных помех. Генераторы – постановщики		
	помех (4 час.)		
6. Мет	оды проектирования РТС	4	
	Проектирование РТС		
	Показатели качества и оценки характеристик РТС.		
16	Инженерный синтез: выбор технических параметров, анализ и	2	
10	моделирование подсистем и устройств РТС		
	<u>Самостоятельное изучение.</u> Анализ существующих		
	технических решений РТС (6 час)		
17	Системный подход проектирования РТС	2	

	Основные	принципы	И	методы	анализа	системой	И			
	элеткромагнитной совместимости РТС									
Итого часов						24	12			

4.2 Практические занятия Практические занятия учебным планом не предусмотрены.

4.3 Лабораторные работы

Неделя	Наименование лабораторной работы	Объем	В том	Виды
семестр		часов	числе в	контроля
a			интеракти	•
			вной	
			форме	
			(ФИ)	
1. Общи	е сведения о РТС. Представление сигналов и помех	4		
1	Вводное занятие. Инструктаж по технике безопасности.	2		
	Ознакомление с лабораторными стендами, приборами и			
	методикой экспериментов.			
2	Зачетное занятие	2		отчет
2. Радиол	окационные и радионавигационные системы	8		
3	Исследование радионавигационной системы	2		
5	Исследование радиолокационной системы	2		
6	Исследование ЭПР целей	2		
7	Зачетное занятие	2		отчет
3. Систем	иы передачи информации	12		
9	Исследование помехоустойчивости систем связи	2		
11	Разделение каналов по форме сигналов	2		
12	Исследование оптимального приемника ЛЧМ	4		
13	Исследование оптимального приемника	2		
	фазоманипулированного сигнала			
14	Зачетное занятие	2		отчет
Итого ч	асов	24		

4.4 Самостоятельная работа студента (СРС)

Неделя	Содержание СРС	Виды	Объем
семестра	содержание ст с	контроля	часов
	8 семестр	Экзамен	96
1	Работа с конспектом лекций, с учебником	проверка домашнего задания	5
	Подготовка к выполнению лаб. работы	допуск к выполнению	5
2	Подготовка к выполнению лаб. работы	допуск к выполнению	5
3	Подготовка к выполнению лаб. работы	допуск к выполнению	5
5	Подготовка к выполнению лаб. работы	допуск к выполнению	5
7	Работа с конспектом лекций, с учебником	проверка домашнего задания	5
/	Подготовка к выполнению лаб. работы	допуск к выполнению	5
9	Работа с конспектом лекций, с учебником	проверка домашнего задания	5

	Подготовка к выполнению лаб. работы	допуск к выполнению	5
10	Подготовка к выполнению лаб. работы допуск к выполнению		5
11	Подготовка к выполнению лаб. работы допуск к выполнению		5
12	Подготовка к выполнению лаб. работы	допуск к выполнению	5
13	Работа с конспектом лекций, с учебником	проверка домашнего задания	6
13	Подготовка к выполнению лаб. работы	допуск к выполнению	5
14	Работа с конспектом лекций, с учебником	проверка домашнего задания	6
14	Подготовка к выполнению лаб. работы	допуск к выполнению	5
15	Работа с конспектом лекций, с учебником	проверка домашнего задания	6
16	Работа с конспектом лекций, с учебником	проверка домашнего задания	6
18	Подготовка к экзамену	Экзамен	8

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

	В рамках изучения дисциплины предусмотрены следующие образовательные
	технологии:
5.1	Информационные лекции;
5.2	Практические занятия:
	Практические занятия учебным планом не предусмотрены;
5.3	лабораторные работы:
	 выполнение лабораторных работ в соответствии с индивидуальным графиком,
	защита выполненных работ;
5.4	самостоятельная работа студентов:
	 изучение теоретического материала,
	 подготовка к лекциям, лабораторным работам,
	 работа с учебно-методической литературой,
	 оформление конспектов лекций, подготовка отчетов,
	 подготовка к текущему контролю успеваемости, к зачету и экзамену;
5.5	консультации по всем вопросам учебной программы.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

6.1	Контрольные вопросы и задания	
6.1.1	Используемые формы текущего контроля:	
	 отчет и защита выполненных лабораторных работ. 	
6.1.2	Рабочая программа дисциплины обеспечена фондом оценочных средств для проведения	
	промежуточной аттестации. Фонд включает вопросы к экзаменам.	
	Фонд оценочных средств представлен в учебно – методическом комплексе дисциплины.	
6.2	Темы письменных работ	
6.2.1	Контрольные самостоятельные работы учебным планом не предусмотрены	

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1 Рекомендуемая литература				
№ п/п	Авторы, составители	Заглавие	Годы издания. Вид издания	Обеспечен ность
1		7.1.1. Основная литература		•
7.1.1.1	Под ред.	Радиотехнические системы (5 экз)	2008.	0,2
	Ю.М. Казаринова.	621.37/39 P154	печат	
7.1.1.2	Васин В.А. и др.	Радиосистемы передачи информации (25 экз)	2005	1,0
		621.396.9 P154	печат	
		7.1.2. Дополнительная литература	.	
7.1.2.1	Бессарабова А.А.,	Системы передачи информации с кодовым	2006	1, 0
	Ледовских В.И.	разделением каналов (39 экз) 621.396 Б535	печат.	
7.1.2.2	Бессарабова А.А.,	Псевдослучайные двоичные последовательности	2006	1,0
	Ледовских В.И.	(25 экз) 621.396 Б535	печат.	
		7.1.3 Методические разработки		
		Ірограммное обеспечение и интернет ресурсы		
7.1.4.1	Методические указа	ния к выполнению лабораторных работ представле	ны на саі	йте:
7142		/departments_institute/frm/reus/434/		
7.1.4.2	- I	актические работы:		
7142		помехоустойчивости радиотехнических систем		
7.1.4.3	•			
	 Радиотехнические системы 			
	– Радиолокация			
	– Радионавигация			
7.1.4.4	Мультимедийные.	лекционные демонстрации:		
	– Радиотехниче			
	– Радиолокация			
	– Радионавигац	Р		

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

8.1	Специализированная учебная лаборатория, оснащенная компьютером с выходом в	
	сеть Internet, комплексом лабораторного оборудования, наглядных материалов и	
	плакатов.	
8.2	Натурные лекционные демонстрации:	
	 Масштабного моделирования локатора обнаружения цели 	

Карта обеспеченности рекомендуемой литературой

No	Авторы, составители	Заглавие	Год издания.	Обеспеч
п/п			Вид издания.	енность
		1. Основная литература		
Л1.1	Под ред.	Радиотехнические системы (5 экз)	2008.	
	Ю.М.	621.37/39 P154	печат	
	Казаринова.			
Л1.2	Васин В.А. и др.	Радиосистемы передачи информации (25 экз)	2005	
		621.396.9 P154	печат	
		2. Дополнительная литература		
Л2.1	Бессарабова А.А.,	Системы передачи информации с кодовым	2006	
	Ледовских В.И.	разделением каналов (39 экз) 621.396 Б535	печат.	
Л2.2	Бессарабова А.А.,	Псевдослучайные двоичные последовательности	2006	
	Ледовских В.И.	(25 экз) 621.396 Б535	печат.	

/
,

	Утверждаю
зав. каф	редрой РЭУС
Н	О.С. Балашов

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ

Контрольно-измерительные материалы текущего контроля

- 1.Основные виды РТС ПИ: радиорелейные, спутниковые, космические, тропосферные, ионосферные и метеорные.
 - 2. Модели каналов связи без помех и с помехами; канал со стиранием.
- 3. Применение в СПИ относительной фазовой манипуляции. Схема когерентного и некогерентного приема.
- 4. Классификация многоканальных СПИ. Принцип линейного и нелинейного уплотнения каналов. Примеры.
 - 5. Частное количество информации и его свойства.
 - 6. Методы разнесённого приёма и их характеристика.
 - 7. Основы теории линейного разделения каналов (вывод). Линейно-независимые сигналы.
 - 8. Полная информация и её свойства.
 - 9. Активный метод борьбы с многолучёвостью.
 - 10. Линейное уплотнение и разделение каналов. Функциональная схема, принцип работы.
 - 11. Собственная информация источника и его энтропия; свойства энтропии.
 - 12. Примеры эквалайзинга при многолучёвом распространении радиоволн.
- 13. Частотное разделение каналов. Закреплённые и незакреплённые частоты. Система "Алтай"
 - 14. Энтропия двоичного источника.
 - 15. Дальность действия в радиолокации. Основное уравнение дальности (вывод).
 - 16. Временное разделение каналов. Принцип ИКМ.
 - 17. Производительность и избыточность источника. Пример избыточного сообщения.
 - 18. Методы определения местоположения в РТС.
 - 19. Разделение каналов по форме сигналов.
 - 20. Энтропия непрерывного источника.

Контрольно-измерительные материалы промежуточного контроля

- 1. Комбинационное уплотнение каналов. Определение. Принцип работы схемы. Помехоустойчивость.
 - 2. Свойство приведённой энтропии, касающееся её максимальных значений (вывод).
- 3. iКомбинационное уплотнение каналов: двойная частотная и фазовая телеграфия. Сравнительные их характеристики.
 - 4. Условная энтропия и её свойства.
- 5. Мажоритарное уплотнение каналов. Принцип формирования группового сигнала и его особенность. Разделение каналов при приёме. Помехоустойчивость по сравнению с линейными методами уплотнения.
 - 6. Основное уравнение теории информации.
 - 7. Активные методы борьбы с многолучевостью.
- 8. Юсновы теории линейного разделения каналов (вывод). Линейная независимость сигналов. Пример линейно-независимых сигналов.
 - 9. Пропускная способность двоичного симметричного канала (вывод).
- 10.Классификация многоканальных СПИ. Принцип линейного и нелинейного уплотнения каналов. Примеры.
 - 11. Пропускная способность гауссовского канала (вывод). Предельные соотношения.
 - 12. Линейное уплотнение каналов. Функциональная схема СПИ. Принцип работы.
 - 13. Теорема кодирования для канала с помехами.
 - 14. Собственная информация источника.
- 15. Частотное разделение каналов. Закрепленные и незакрепленные частоты. Система "Алтай".
 - 16. Теорема кодирования для канала без помех.
- 17. Основы теории линейного разделения каналов (вывод). Линейная независимость сигналов. Пример линейно-независимых сигналов.
 - 18. Пример безизбыточного кодирования независимых букв источника.
 - 19. Временное разделение каналов. Принцип ИКМ.
 - 20. Энтропия двоичного источника (вывод).
 - 21. Полная информация и её свойства.
 - 22. Активный метод борьбы с многолучёвостью.
 - 23. іЛинейное уплотнение и разделение каналов. Функциональная схема, принцип работы.
 - 24. Собственная информация источника и его энтропия; свойства энтропии.
 - 25. Примеры эквалайзинга при многолучёвом распространении радиоволн.

- 26. Частотное разделение каналов. Закреплённые и незакреплённые частоты. Система "Алтай".
 - 27. Энтропия двоичного источника.
 - 28. Дальность действия в радиолокации. Основное уравнение дальности (вывод).
 - 29. Временное разделение каналов. Принцип ИКМ.
 - 30. Производительность и избыточность источника. Пример избыточного сообщения.

Контрольно-измерительные материалы итогового контроля

- 1. Разделение каналов по форме сигналов. Принцип.
- 2. Энтропия непрерывного источника (вывод).
- 3. Комбинационное уплотнение каналов. Определение. Функциональная схема СПИ и принцип её работы. Помехоустойчивость связи.
 - 4. Основное уравнение радиолокации (вывод).
- 5. Мажоритарное уплотнение каналов. Принцип формирования группового сигнала и его особенность. Помехоустойчивость связи.
 - 6. Теорема кодирования для канала с помехами.
- 7. Комбинационное уплотнение каналов: двойная частотная и фазовая телеграфия. Их сравнительные характеристики.
 - 8. Теорема кодирования для канала с помехами.
 - 9. Методы определения местоположения объектов.
 - 10. Разделение каналов по форме сигналов. Кодовое разделение.
 - 11. Свойства приведенной энтропии, касающиеся её максимальных значений.
 - 12. Методы разнесенного приема сигналов. Назначение. Характеристики.
 - 13. Пропускная способность гауссовского канала (вывод).
 - 14. Применение в СПИ относительно-фазовой манипуляции.
 - 15. Частотное и временное разделение каналов. Принцип ИКМ.
 - 16. Пропускная способность двоичного симметричного канала (вывод)
 - 17. Мажоритарное уплотнение каналов. Функциональная схема СПИ и принцип её работы.
 - 18. Пропускная способность гауссовского канала (вывод).
 - 19. Полная информация и её свойства.
 - 20. Активный метод борьбы с многолучёвостью.
 - 21. Линейное уплотнение и разделение каналов. Функциональная схема, принцип работы.
 - 22. Собственная информация источника и его энтропия; свойства энтропии.
 - 23. Примеры эквалайзинга при многолучёвом распространении радиоволн.

- 24. Частотное разделение каналов. Закреплённые и незакреплённые частоты. Система "Алтай".
 - 25. Энтропия двоичного источника.
 - 26. Дальность действия в радиолокации. Основное уравнение дальности (вывод).
 - 27. Временное разделение каналов. Принцип ИКМ.
 - 28. Производительность и избыточность источника. Пример избыточного сообщения.
- 31. Применение в СПИ относительной фазовой манипуляции. Схема когерентного и некогерентного приема.
- 32. Классификация многоканальных СПИ. Принцип линейного и нелинейного уплотнения каналов. Примеры.
 - 33. Частное количество информации и его свойства.
 - 34. Методы разнесённого приёма и их характеристика.
 - 35.Основы теории линейного разделения каналов (вывод). Линейно-независимые сигналы.
 - 36. Полная информация и её свойства.
 - 37. Активный метод борьбы с многолучёвостью.
 - 38. Линейное уплотнение и разделение каналов. Функциональная схема, принцип работы.
 - 39. Собственная информация источника и его энтропия; свойства энтропии.
 - 40. Примеры эквалайзинга при многолучёвом распространении радиоволн.
- 41. Частотное разделение каналов. Закреплённые и незакреплённые частоты. Система "Алтай".
 - 42. Энтропия двоичного источника.
 - 43. Дальность действия в радиолокации. Основное уравнение дальности (вывод).
 - 44. Временное разделение каналов. Принцип ИКМ.

Председатель методической комиссии

Утверждаю
зав. кафедрой РЭУС
Ю.С. Балашов

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Часть 1.

Радиотехнические системы (РТС) – это...

- А) информационно-управляющие технические системы, осуществляющие извлечение, передачу или разрушение информации с помощью радиоволн;
- Б) сложные технические системы передачи информации, использующие в качестве канала связи только атмосферную среду;
- В) технические системы, осуществляющие только прием/передачу информации;
- Г) все радиосистемы, главная задача которых состоит в подавлении и разрушении сигналов противника.
- 1) В чем заключается отличительный признак РТС?
 - А) в том, что радиотехническая система работает лишь с сигналами радиодиапазона;
 - Б) в наличии одного или нескольких радиоканалов;
 - В) в подвижности РТС;
 - Г) в том, что РТС не может иметь в распоряжении больше одного канала связи.
- 2) Почему в РТС сигналы всегда искажаются?
 - А) из-за действия различных технических средств;
 - Б) из-за металлобетонных конструкций, расположенных неподалеку от РТС;
 - В) из-за космической радиации;
 - Г) из-за воздействия всевозможных шумов.
- 3) Выберите лишнее:
 - ... системы передачи информации (СПИ) включают в себя системы...
 - А) ...радиосвязи;
 - Б) ...радиоуправления;
 - В) ...передачи команд;
 - Г) ...сигналов радиовещания и телевидения.
- 4) Что включают в себя системы извлечения информации?
 - А) только радиолокационные (РЛС) и радионавигационные (РНС) системы;
 - Б) радиолокационные (РЛС) и радионавигационные (РНС) системы, системы радиоастрономии, радионаблюдения поверхности Земли или других планет, радиоразведки технических средств противника;
 - В) только системы радиоастрономии, радионаблюдения поверхности Земли или других планет;

Г) радиолокационные (РЛС) и радионавигационные (РНС) системы и системы радиоразведки технических средств противника.

5) Что изображено на рис.1?

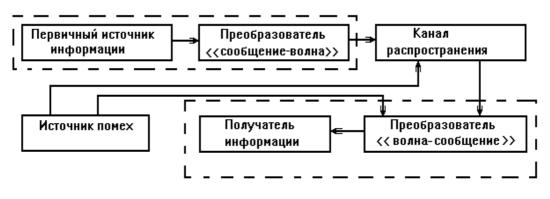


Рисунок 1

- А) структурная схема радиотехнической системы в целом;
- Б) структурная схема РЛС;
- В) структурная схема РНС;
- Г) структурная схема системы радиоразведки технических средств противника.

6) Что рассчитывается с помощью формулы 1?

$$\Im = C_{\Im}/C_{O} \tag{1}$$

- А) экономичность РТС;
- Б) эргономичность любой технической системы;
- В) эффективность РТС;
- Г) коэффициент экранирования.

7) Зона действия РТС - это...

- А) область пространства, в которой РТС, с вероятностью 50 % выполняет функции, определенные ее назначением;
- Б) область пространства, в которой РТС, с вероятностью 75% выполняет функции, определенные ее назначением;
- В) область пространства, ближайшая к самой РТС;
- Г) область пространства, в которой РТС надежно выполняет функции, определенные ее назначением.
- 8) Разрешающая способность РТС это...
 - А) способность РТС раздельно измерять параметры близко расположенных целей;
 - Б) способность РТС разрешать конфликты радиоэлектронной борьбы;
 - В) способность РТС раздельно измерять параметры целей далеко расположенных друг от друга;
 - Γ) способность РТС измерять параметры цели, расположенной на очень большом расстоянии.

9) Выберите лишнее:

К техническим характеристикам РТС относятся:

- А) рабочие частоты, стабильность, мощность, вид модуляции, ширина спектра излучаемых колебаний;
- Б) коэффициент усиления, форма и ширина диаграммы направленности антенны;
- В) вид и параметры устройств отображения и съема информации;
- Г) зона обзора

10) Что в радиотехнике принято называть радиолокацией?

- А) процесс обнаружения объектов, измерения их координат и параметров движения;
- Б) область радиотехники, объединяющая методы и средства обнаружения, измерения координат и параметров движения, а также опознавания, определения свойств и характеристик различных объектов;
- В) область радиотехники, охватывающая радиотехнические методы и средства вождения автомобилей, кораблей, летательных и космических аппаратов, а также других движущихся объектов;
- Г) определение местоположения движущегося объекта с помощью радиотехнических устройств, расположенных на объекте и в окружающем пространстве в точках с известными координатами.

11) Выберите лишнее:

Радиолокационные станции принято классифицировать по происхождению принимаемого радиосигнала на:

- А) пассивные;
- Б) полупассивные;
- В) активные;
- Г) полуактивные.

12) Какой(ие) из диапазонов обычно не использует(ют)ся в РЛС?

- А) декаметровый, дециметровый;
- Б) сантиметровый, миллиметровый;
- В) метровый;
- Г) мириаметровый.

13) Выберите лишнее:

Тактическими характеристиками РЛС являются:

- А) зона действия или зона обзора;
- Б) определяемые параметры объекта и точность их измерения;
- В) чувствительность и полоса пропускания приемного устройства;
- Г) разрешающая способность, пропускная способность.

14) Что иллюстрирует рис.2?

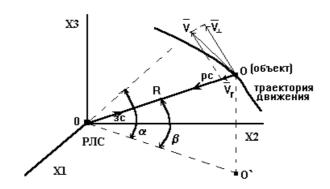


Рисунок 2

- А) определение геометрических параметров замеченного объекта;
- Б) определение параметров движения объекта;
- В) нахождение лишь скорости объекта;
- Г) нахождение лишь расстояния до объекта.
- 15) Что можно рассчитать с помощью формул 2 и 3 соответственно?

$$R=c\tau/2$$
 (2)

$$F_v = 2f_0V_r/c = 2V_r/\lambda_0$$
 (3)

- А) радиальную скорость движения объекта и дальность объекта;
- Б) дальность объекта и отраженную от объекта частоту;
- В) дальность объекта и доплеровское смещение частоты отраженного сигнала;
- Г) ничего из перечисленного.
- 16) Для чего нужен антенный переключатель в РЛС?
 - А) для того, чтобы иметь возможность работать с несколькими антеннами;
 - Б) для того, чтобы передавать сигнал с одной антенны на несколько РЛС;
 - В) для того, чтобы не сжечь приемник во время передачи зондирующего импульса;
 - Γ) для того, чтобы не сжечь приемник во время паузы между зондирующими импульсами.
- 17) Как называется способность системы наблюдать и распознавать две цели расположенные близко относительно друг друга.
 - А) разрешающая способность;
 - Б) точность измерения координат;
 - В) различающая способность;
 - Г) пропускная способность.
 - 18) Что такое радиолокационный сигнал?
 - А) это сигнал, который передает какая либо цель (наземная или воздушная) на РЛС;
 - Б) это сигнал, которым РЛС облучает цели близлежащего пространства;
 - В) это отраженный от цели сигнал, при облучении ее сигналом РЛС;
 - Γ) нет верного ответа.

- 19) Диффузное рассеяние (ненаправленное излучение) возникает...
 - А) ...при размерах облучаемых объектов, кратных нечетному количеству полуволн;
 - Б) ... при облучении "гладких" поверхностей, размеры которых многократно превышают длину волны λ падающей радиоволны;
 - В) ...при облучении больших поверхностей с шероховатостями;
 - Г) ... при размерах облучаемых объектов, кратных четному количеству полуволн.

20) О чем идет речь?

Площадь поперечного сечения такого воображаемого объекта, который, равномерно (изотропно) рассеивая падающие на него радиоволны, в месте приема создает такую же плотность потока мощности, что и реальная цель.

$$\sigma_{_{II}} = 4\pi R^2 \frac{\Pi_2}{\Pi_1} \tag{4}$$

- А) эффективная площадь рассеяния;
- Б) площадь облученной цели;
- В) площадь поперечного сечения облученной цели;
- Γ) нет верного ответа.

21) Что иллюстрирует рис.3?

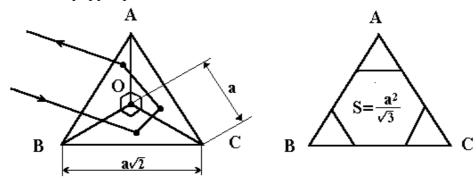
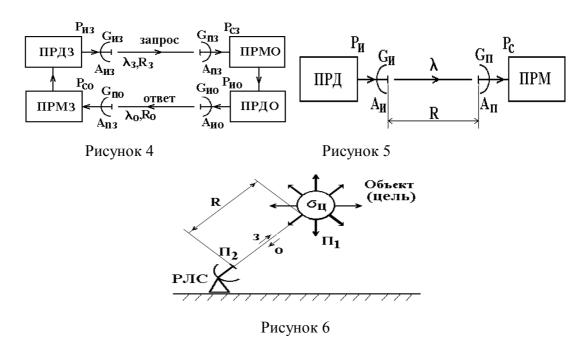



Рисунок 3

- А) конструкцию летательного аппарата;
- Б) конструкцию антенны РЛС;
- В) конструкцию плоского идеального проводящего листа;
- Г) конструкцию зеркального уголкового отражателя (ЗУО).
- 22) К ЭПР простейших объектов можно отнести:
 - А) ЭПР плоского идеального проводящего листа и ЗУО;
 - Б) ЭПР шара и линейного электрического вибратора;
 - В) только ЭПР линейного электрического вибратора;
 - Г) все из перечисленного.
- 23) На каком из рис.4 6 изображена Модель радиолинии с пассивным ответом?

- А) на рис.4 и 5
- Б) на рис.4
- В) на рис.6
- Г) на рис.5
- 24) При каком условии в фидерной линии обеспечивается режим бегущей волны?
 - A) если KBB = 0.5;
 - Б) если КСВ = 1;
 - В) если КСВ → 0;
- 25) Что за выражение представлено в виде формулы (5)?

$$R_{\text{Makc}} = \sqrt[4]{\frac{P_{\text{H}}G_{\text{H}}G_{\text{n}}\lambda^2\sigma_{\text{H}}}{(4\pi)^3 P_{\text{CMHH}}}}$$
 (5)

- А) основное уравнение радиолокации;
- Б) основное уравнение радиолокации или уравнение дальности РЛС в свободном пространстве;
- В) уравнение дальности РЛС в свободном пространстве;
- Γ) обобщенное уравнение дальности радиолокационного наблюдения в свободном пространстве.
- 26) Дальность действия РЛС в свободном пространстве в наибольшей степени зависит от...
 - А) энергии импульса излучения Е_и;
 - Б) от коэффициентов усиления передающей $G_{\rm u}$ и приемной $G_{\rm n}$ антенн;
 - B) от ЭПР объекта σ_{II} ;
 - Γ) от всего перечисленного.
- 27) Существенное влияние на дальность действия РТС оказывает(ют)...

- А) поглощение и дифракция;
- Б) рефракция и деполяризация радиоволн на трассе распространения;
- В) поглощение, рефракция, дифракция и деполяризация радиоволн на трассе распространения;
- Г) влияние подстилающей поверхности.

28) О чем идет речь?

Изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

- А) о доплеровском набеге частоты;
- Б) о набеге фазы;
- В) об эффекте Миллера;
- Г) ответы А) и Б).
- 29) Рефракция радиоволн в атмосфере это...
 - А) наложение волн;
 - Б) огибание препятствий волнами с длиной волны большей, чем эти препятствия;
 - В) криволинейная траектория их распространения из-за атмосферных помех;
 - Г) криволинейная траектория их распространения из-за неоднородностей среды.

- 2. Тестовые залания. Часть 2.
- 1) Что такое радионавигационный параметр (РНП)?
 - А) тактический параметр РЛС;
 - Б) технический параметр РЛС;
 - В) параметр радиосигнала, несущий информацию о координате или скорости объекта;
 - Г) параметр радиосигнала РЛС, зондирующего заданную область пространства.
- 2) Продолжите фразу:

Погрешность определения поверхности положения оценивают ...

- A) ... отрезком нормали l между поверхностями положения, соответствующими истинному и измеренному значениям РНП;
- Б) ... точкой пересечения поверхностей положения, соответствующих истинному и измеренному значениям РНП;
- В) ... точкой пересечения по крайней мере двух линий положения различных семейств;
- Γ) нет верного ответа.
- 3) При определении координат объекта позиционным методом, точность нахождения местоположения растет ...
 - А) при уменьшении погрешностей определения линий положения;
 - Б) при приближении угла пересечения линий положения к 90^{0} ;
 - В) при А) и Б)
 - Γ) при приближении угла между линиями положения к 0° .
- 4) О чем идет речь?
 - ... часть пространства (поверхности), в пределах которой обеспечивается нахождение координат объекта с погрешность, не превышающей максимальную.
 - А) рабочая зона РТС;
 - Б) рабочая зона радионавигационной станции (РНС);
 - В) зона покрытия РЛС;
 - Г) зона покрытия базовой станции.
- 5) Какие бывают виды РНС?
 - А) дальномерные и разностно-дальномерные;
 - Б) угломерные и дальномерные;
 - В) угломерно-дальномерные и разностно-дальномерные;
 - Г) все перечисленные.
- 6) В диапазоне гектометровых волн (средних) под воздействием неоднородностей подстилающей поверхности и атмосферы наблюдается зависимость фазовой скорости распространения от частоты. Как называется данное явление?
 - А) дифракция скорости распространения;
 - Б) дисперсия скорости распространения;
 - В) доплеровский набег частоты;
 - Γ) нет верного ответа.

- 7) В чем РЛС осуществляет поиск сигнала (рабочая зона в радиолокации)?
 - А) в зоне покрытия;
 - Б) в секторе обзора;
 - В) А) или Б);
 - Г) любой из вариантов.
- 8) Что можно вычислить с помощью формулы 1?

$$T_0 \ge \frac{2D_{max}\theta_{\alpha}}{c} \frac{\theta_{\alpha}}{\alpha_A} \frac{\theta_{\beta}}{\beta_A} N \tag{1}$$

- А) период обращения антенны РЛС;
- Б) время приема отраженного сигнала;
- В) время, необходимое для обзора заданного объема пространства;
- Г) время, необходимое для передачи и получения отраженного от цели сигнала.
- 9) В каком случае ширина диаграммы направленности антенны (ДНА) РЛС в горизонтальной плоскости будет шире?
 - А) если РЛС кругового обзора;
 - Б) если РЛС с секторным обзором;
 - В) не имеет значения;
 - Г) другой ответ.
- 10) Что иллюстрируют рис. 1 и 2 соответственно?

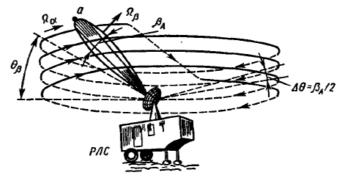


Рисунок 1

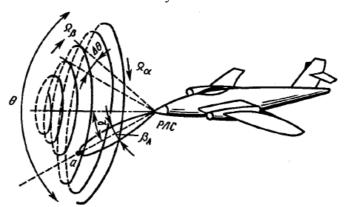


Рисунок 2

- А) работу РЛС с круговым и винтовым обзором;
- Б) работу РЛС с винтовым обзором и секторным;

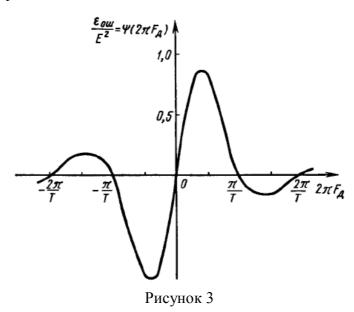
- В) работу РЛС с винтовым и спиральным обзором;
- Г) работу РЛС со спиральным и секторным обзором.
- 11) Какая из антенн (антенных систем) наиболее эффективна при использовании ее в радиолокации?
 - А) фазированная антенная решетка (ФАР);
 - Б) плоская антенная решетка;
 - В) круговая антенная решетка;
 - Г) параболическая антенна.
- 12) Что такое пассивные помехи в радиолокации?
 - А) сигналы, отраженные от цели;
 - Б) сигналы сторонних излучателей (н-р радиостанций);
 - В) сигналы РЛС, отраженные от мешающих объектов (от всего, кроме цели);
 - Г) атмосферные шумы.
- 13) Чем так важен доплеровский эффект, если речь идет о селекции движущихся целей (СДЦ)?
 - А) важен тем, что, с помощью этого эффекта возможно определить набег частоты сигнала, отраженного от цели, а далее, считая все остальные объекты пассивными, отфильтровать все, что возвращают мешающие объекты;
 - Б) важен тем, что позволяет определить смещение частоты сигнала, отраженного от статичной помехи, а далее произвести селекцию всех сигналов на приеме;
 - В) ничем не важен, хоть и имеет место при отражениях от динамических целей;
 - Г) ничем не важен, так как имеет место лишь при отражениях от статических целей;
- 14) Вставьте числа из табл. 1, соответствующие пропущенным словам (фразам):

Спектр импульсного сигнала, отраженного статичным объектом ... $(?)^1$..., а спектр импульсного сигнала, отраженного движущимся объектом ... $(?)^2$... при удалении объекта или ... $(?)^3$... при его приближении.

Таблица 1

(1)	переносится вверх по частоте
(2)	сжимается
(3)	не может совпадать со спектром зондирующего
(4)	переносится вниз по частоте
(5)	совпадает со спектром зондирующего
(6)	растягивается

A) (3), (1), (4);


Б) (5), (6), (2);

B) (2), (4),(1);

 Γ) (5), (2), (6).

15) Какой из методов наиболее эффективен при применении его в системах селекции движущихся целей (СДЦ)?

- А) устранение зон слепых скоростей;
- Б) формирование карты мешающих отражений ОЗУ;
- В) адаптивная компенсация помех;
- Г) все перечисленные методы наиболее эффективны среди других.
- 16) Каково влияние флуктуаций амплитуды сигналов и движения РЛС на эффективность систем селекции движущихся целей (СДЦ)?
 - А) передвижение РЛС сказывается на системе в виде фона местных предметов, флуктуация амплитуды сигнала напротив не вносит лишних засвеченных пятен на индикатор кругового обзора (ИКО);
 - Б) флуктуация амплитуды сигнала и передвижение РЛС сказываются на системе в виде фона местных предметов, так как и тот и другой случай обуславливает наличие доплеровского набега частоты;
 - В) лишь флуктуация амплитуды сигнала сказывается на системе в виде фона местных предметов;
 - Г) ни флуктуация амплитуды сигнала, ни передвижение РЛС существенных влияний не оказывают на работоспособность СДЦ.
- 17) Какая дальность действия импульсно-фазовой радионавигационной системы (ИФРНС) длинноволнового диапазона?
 - А) до 2000 км;
 - Б) до 5000 км;
 - В) до 200 км;
 - Г) до 800 км.
- 18) Что изображено на рис. 3?

- А) характеристика фазового дискриминатора;
- Б) характеристика частотного дискриминатора;
- В) характеристика дискриминатора уровня;
- Г) другой ответ.

- 19)В чем различие фазового и импульсно-фазового методов измерения РНП?
 - А) принцип действия фазовой РНС основан на измерении дальностей (или их разностей) до нескольких радиомаяков (РМ), в ИФРНС все то же самое, но измерение координат производится в два этапа: грубое измерение и точное;
 - Б) принцип действия ИФРНС основан на измерении дальностей (или их разностей) до нескольких радиомаяков (РМ), в ФРНС все то же самое, но измерение координат производится в два этапа: грубое измерение и точное;
 - В) существенных различий нет;
 - Г) другой ответ.
- 20)В чем заключается устранение многозначности измерений?
 - А) заключается в установлении нечетного числа циклов в фазовом сдвиге Φ , который определяет оценку РНП;
 - Б) заключается в установлении четного числа циклов в фазовом сдвиге $\Phi \phi$, который определяет оценку РНП;
 - В) заключается в установлении целого числа циклов в фазовом сдвиге $\Phi \varphi$, который определяет оценку РНП;
 - Γ) нет верного ответа.
- 21) Поиск, при котором достигается минимальное среднее время поиска объекта (среднее время пребывания необнаруженного объекта в зоне обзора) называется:
 - А) максимальным;
 - Б) правдоподобным;
 - В) адаптивным;
 - Γ) оптимальным.
- 22) Что вычисляется с помощью формулы 2?

$$\tau_{\text{RMaKc}} = 2R_{\text{MaKc}}/c$$
 (2)

- А) время достижения сигналом цели;
- Б) время задержки приема сигнала при максимальной дальности цели;
- В) время, за которое принятый сигнал отобразится на ИКО;
- Г) время, за которое сигнал СДВ станции огибает Землю.
- 23) Что иллюстрирует рис. 4?

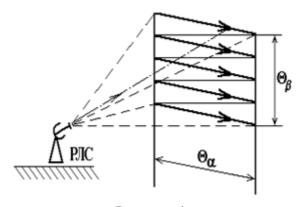


Рисунок 4

- А) секторный обзор;
- Б) строчно-кадровый обзор:
- В) винтовой обзор;
- Γ) нет верного ответа.
- 24) Какие методы измерения координат использовались в спутниковых РНС первого поколения?
 - А) интегральный доплеровский метод;
 - Б) планарный метод;
 - В) дифференциальный доплеровский метод;
 - Г) А) и В).
- 25) Какие волны могут в течение года и независимо от времени суток беспрепятственно проникать через ионосферу в космос?
 - А) от 30 см до 30 м;
 - Б) до 3 см;
 - В) от 3 мм до 10 м;
 - Г) до 3 м.
- 26) Как выглядит формула для расчета геометрического фактора РНС (см. рис.5)?

как выглядит формула для расчета геометрического фактора РНС (см. рис.3)?
$$\Gamma = \frac{\sigma_r}{\sigma_p} = \frac{1}{\sin \alpha_M} \sqrt{\frac{1}{g^{\frac{1}{2}} + \frac{1}{g^{\frac{2}{2}}}}, \qquad R_m = D = \sqrt{\sigma_{rm}^2 - \sigma_D^2/\sigma_\alpha}, \quad N_D = \frac{D_{\text{макс}} - D_{\text{мин}}}{\Delta D_{\text{мян}}}; \qquad T_{\text{осп}} = 2\pi\Theta/(\beta_A \Omega_\alpha).$$
a) 6) в) г) Рисунок 5

- A) a;
- Б) б;
- B) B;
- Г) г.
- 27) Какой сектор сканирования имеют плоские решетки?
 - A) не более 60° :
 - Б) не более 90° ;
 - B) не более 120⁰;
 - Γ) не более 180° .
- 28) Как называется приемник, обеспечивающий наилучшее отношение сигнал/шум при приеме сигнала?
 - А) квазиоптимальный приемник;
 - Б) оптимальный приемник;
 - В) длинноволновый приемник;
 - Г) другой ответ.
- 29) Какими преимуществами обладает ЛЧМ-сигнал, при использовании его в РЛС?
 - А) обладает хорошей разрешающей способностью;

- Б) способен скрываться под шумами;
- В) имеет маленькую базу;
- Г) А) и Б).
- 30) С помощью чего осуществляется адаптивная компенсация помех (в адаптивных устройствах селекции движущихся целей)?
 - А) с помощью ДПФ (дискретное преобразование Фурье);
 - Б) с помощью ДПФ и БПФ (быстрое преобразование Фурье);
 - В) с помощью Z-преобразования;
 - Г) иными методами.

- 3. Тестовые задания. Часть 3
- 1) Устройство, предназначенное для оценки времени запаздывания сигналов РНС называется:
 - А) следящий измеритель;
 - Б) измеритель уровня;
 - В) дешифратор;
 - Г) секундомер.
- 2) Что означает аббревиатура ФАПЧ?
 - А) фидерная линия антенны передатчика частоты;
 - Б) фазовая автоподстройка преобразователя частоты;
 - В) фазовая автоподстройка частоты;
 - Г) нет верного ответа.
- 3) Точность и разрешающая способность ЧМ-дальномера (использующего ЛЧМ- и ГЧМ- сигналы), а так же минимальная дальность определяются...
 - А) шириной ДНА РНС;
 - Б) уровнем излучаемой мощности;
 - В) погодными условиями;
 - Г) девиацией частоты излучаемого сигнала.
- 4) О чем идет речь?
 - (********) это горизонтальная проекция скорости летательного аппарата (ЛА) относительно земной поверхности.
 - А) радиальная скорость ЛА;
 - Б) путевая скорость ЛА;
 - В) воздушная скорость;
 - Г) А) или Б).
- 5) Чем связаны путевая скорость с воздушной скоростью и со скоростью ветра?
 - А) перпендикулярностью проекций на земной поверхности;
 - Б) все три скорости не связаны ничем;
 - В) навигационным треугольником;
 - Γ) воздушная скорость (то же самое, что скорость ветра) никак не связана с путевой скоростью.
- 6) О чем идет речь?
 - (*************) метод измерения путевой скорости и угла сноса заключается в измерении времени задержки между отраженными от подстилающей поверхности сигналами, принимаемыми разнесенными антеннами, расположенными на ЛА.
 - А) корреляционный метод;
 - Б) доплеровский метод;
 - В) многолучевой метод;
 - Γ) нет верного ответа.

7) Что изображено на рис. 1?

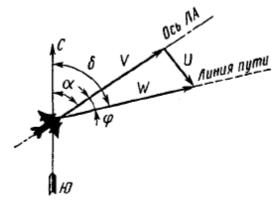


Рисунок 1

А) эскиз экрана РНС;

Б) эскиз экрана РЛС;

В) элемент навигационной карты;

Г) радионавигационный треугольник.

8) Определение направления на источник принимаемого радиосигнала – это ...

А) радиолокационное наведение;

Б) радиопеленгование;

В) радионаведение;

Г) другой ответ.

9) Какие бывают методы определения направления?

А) амплитудный и амплитудно-фазовый;

Б) частотный и фазовый метод;

В) частотно-амплитудный;

Г) все перечисленные.

10) При каком режиме работы РЛС используется одна антенна

А) непрерывном;

Б) импульсно-непрерывном;

В) импульсном;

 Γ) хаотичном.

11) Какое выражение определяет базу простого сигнала

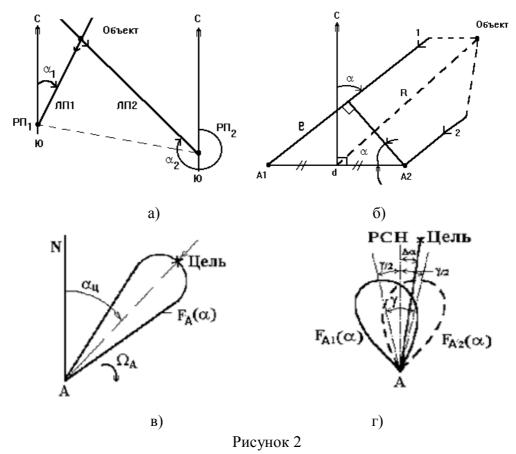
A)
$$B_n = \Delta f \cdot \tau = 1$$
;

B)
$$B_n = \Delta f \cdot \tau' = 1$$
;

B)
$$B_n = \Delta f' \cdot \tau >> 1$$
;

$$\Gamma$$
) $B_n = \Delta f \cdot \tau << 1$.

12) Выберете частоту повторения зондирующих импульсов


A)
$$F_n = \frac{1}{\tau}$$
;

$$F_n = \frac{2R}{c};$$

B)
$$F_n = \frac{c}{2R}$$
;

$$\Gamma) F_n = \frac{c}{2t}.$$

- 13) В каком из методов дальнометрии используются сигналы с линейно-частотной модуляцией
 - А) нигде;
 - Б) импульсный;
 - В) частотный;
 - Г) однополосный.
- 14) Пеленг это...
 - А) команда уничтожить цель;
 - Б) определения местоположения РЛС;
 - В) определения параметров цели;
 - Γ) определение направления на цель.
- 15) Какой метод в радионавигации позволяет определить местоположение цели из одной точки с помощью трех координат
 - А) дальномерный;
 - Б) разностно-дальномерный;
 - В) угломерный;
 - Г) угломерно-дальномерный.
- 16) Телеуправление это...
 - А) самонаводящийся снаряд;
 - Б) наведение снаряда на цель с известными параметрами;
 - В) управление снарядом с командного пункта;
 - Г) такого радиоуправления нет.
- 17) В состав любой системы командного наведения входят
 - А) линия засекреченных переговоров;
 - Б) линия передачи информации;
 - В) линия запретных команд;
 - Г) линия контроля выполнения команд оператора.
- 18) Что изображено на рис. 2?

- A) а) и б) суммарно-разностный метод пеленгования и амплитудный метод максимума;
- Б) в) и г) пеленгование методом анализа огибающей ДН и пеленгование равносигнальным методом;
- В) а) и б) определение местоположения объекта угломерным методом и фазовый метод радиопеленгования;
- Г) в) и г) амплитудный метод минимума и пеленгование равносигнальным методом.
- 19) Что понимают под радиоэлектронной борьбой (РЭБ)?
 - А) выявлению систем управления войсками и оружием противника, их радиоэлектронному подавлению;
 - Б) защите своих систем управления войсками и оружием;
 - В) противодействию радиоэлектронной разведке противника;
 - Γ) все перечисленное.
- 20) Радиоэлектронное подавление (РЭП) это...
 - А) вывод из строя РТС противника путем уничтожения;
 - Б) намеренная работа на одной и той же частоте с противником;
 - В) А) или Б)
 - Г) создание активной помехи, снижающей эффективность вражеской РТС.
- 21) Какие бывают виды помех, в зависимости от ширины спектра?
 - А) прицельные и заградительные;
 - Б) имитационные помехи (ИП);

- В) активные и пассивные;
- Г) тепловые и атмосферные.
- 22) Амплитудная селекция (метод защиты от активных помех) производится путем...
 - А) ... запирания входа приемника РТС на время отсутствия полезного сигнала и использования систем временных АРУ.
 - Б) ... применения различных систем АРУ, амплитудных ограничителей, а также усилителей с расширенным динамическим диапазоном.
 - В) ... различения поляризации излучения источников полезного сигнала и помех.
 - Г) ... различения в структуре спектров сигнала и помехи и их несущих частот.
- 23) Получение информации о противнике с помощью специальных радиоэлектронных средств это...
 - А) радиоразведка (РР);
 - Б) радиолокационная разведка;
 - В) радиотехническая разведка;
 - Г) радиоэлектронная разведка (РЭР).
- 24) Что входит в систему РР?
 - А) радиоприемники и антенны, радиопеленгаторы, панорамные приемники и анализаторы спектра частот.
 - Б) аппаратура рассекречивания шифрованных и кодированных радиопередач, средства управления, связи и передачи добываемой информации;
 - В) оконечные устройства слухового контроля;
 - Г) все перечисленное и другие элементы.
- 25) В каком интервале длин волн невозможна работа радиотеплолокатора?
 - А) дециметровый;
 - Б) сантиметровый;
 - В) миллиметровый;
 - Г) субмиллиметровый.
- 26) Что можно вычислить с помощью формулы 1?

$$R_{\text{Makc}} = \sqrt{\frac{\Delta T}{\Delta T_n}} \frac{S_u D_A}{4\pi}$$
 (1)

- А) дальность действия радиолокационной станции (РЛС);
- Б) дальность действия радиотепловой станции (РТЛ);
- В) дальность действия радионавигационной станции (РНС);
- Г) дальность действия лазерно-локационной станции (ЛЛС).
- 27) Какое из утверждений, касающихся оптической локации, неправильное?
 - А) малое время обзора рабочей зоны ЛЛС и простота наведения оптических антенн на объекты наблюдения;

- Б) зависимость параметров ЛЛС от условий распространения излучения в атмосфере и от наличия в зоне действия ЛЛС осадков и других рассеивателей дымов, пыли, различных аэрозолей и т.п.;
- В) ограниченная эффективность обнаружения локационных сигналов как из-за внешних (фоновых) и внутренних шумов, так и из-за квантовой природы самих сигналов;
- Г) использование дискретного способа регистрации оптических сигналов малой мощности путем счета отдельных фотоэлектронов (фотонов).

28) Сопоставьте цифры из выражения с буквами (на рис.3):

В состав активной ЛЛС входят: лазерный передатчик ЛП, содержащий лазер (1) и устройство модуляции излучения, а также передающую оптическую систему (2) с устройством сканирования излучения; оптический приемник ОП, содержащий приемную оптическую систему (3) (которая может быть совмещена с передающей) и фотоприемник (4); выходное (индикаторное) устройство (5).

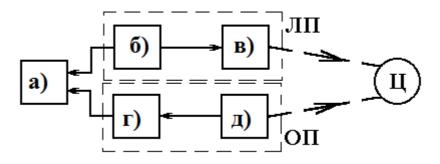


Рисунок 3 – Структурная схема ЛЛС

- А) ■(а)&б)&в)@1&3&5) ■(г)&д)@4&2);
- Б) ■(а)&б)&в)@4&5&2) ■(г)&д)@1&3);
- В) ■(а)&б)&в)@5&1&2) ■(г)&д)@4&3);
- Г) ■(а)&б)&в)@3&1&2) ■(г)&д)@4&5)

29) Какие выражения верны для расчета дальности действия ЛЛС?

A)
$$R_{\text{макс1}} = \sqrt{\frac{P_{\text{и}} G k_{0} S_{\text{A}} \rho_{\text{Д}}(\alpha)}{\pi P_{\text{смин}}}}$$
, при $R_{\text{I}} < R_{\text{г}}$;

Б)
$$R_{\text{макс2}} = \sqrt[4]{rac{P_{_{\rm I\! I}} G k_{_0} S_{_{\rm A}} \sigma_{_{_{\rm I\! I}}}}{\pi^2 \Theta_{_{_{\rm I\! I}}}^2 P_{_{\text{смин}}}}}$$
, при $R_2 \!\!>\!\! R_{_{\Gamma}};$

В)
$$R_{\text{макс1}} = \sqrt{\frac{P_{\text{и}} G k_0 S_{\text{A}} \rho_{\text{Д}}(\alpha)}{\pi P_{\text{смин}}}}$$
, при $R_{\text{I}} > R_{\text{г}}$;

$$\Gamma) \ \, R_{_{MAKC2}} = \sqrt[4]{\frac{P_{_{\text{и}}} G k_{_{0}} S_{_{A}} \sigma_{_{II}}}{\pi^{2} \Theta_{_{\pi}}^{2} P_{_{CMИH}}}} \ \, , \ \, \text{при } R_{2} \!\!<\!\! R_{_{\Gamma}}.$$

- 30) От чего сильнее всего зависит качество работы ЛЛС?
 - А) от атмосферного рассеяния и метеоусловий, а также от шумов, связанных с переотражением от объекта нацеливания;
 - Б) от излучаемой мощности лазера ЛЛС;
 - В) от качественных характеристик поверхности цели;
 - Г) от вида лазера.

4. Тестовые задания по общему курсу дисциплины

- 30) Радиотехнические системы (РТС) это...
 - А) информационно-управляющие технические системы, осуществляющие извлечение, передачу или разрушение информации с помощью радиоволн;
 - Б) сложные технические системы передачи информации, использующие в качестве канала связи только атмосферную среду;
 - В) технические системы, осуществляющие только прием/передачу информации;
 - Γ) все радиосистемы, главная задача которых состоит в подавлении и разрушении сигналов противника.

31) Выберите лишнее:

... системы передачи информации (СПИ) включают в себя системы...

- А) ...радиосвязи;
- Б) ...радиоуправления;
- В) ...передачи команд;
- Г) ...сигналов радиовещания и телевидения.

32) Что изображено на рис.1?

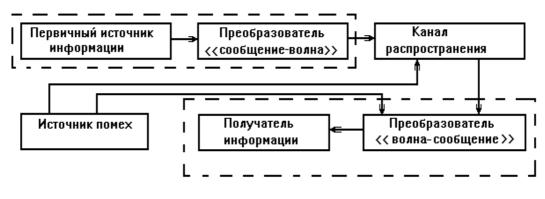


Рисунок 1

- А) структурная схема радиотехнической системы в целом;
- Б) структурная схема РЛС;
- В) структурная схема РНС;
- Г) структурная схема системы радиоразведки технических средств противника.

33) Зона действия РТС - это...

- А) область пространства, в которой РТС, с вероятностью 50 % выполняет функции, определенные ее назначением;
- Б) область пространства, в которой РТС, с вероятностью 75% выполняет функции, определенные ее назначением;
- В) область пространства, ближайшая к самой РТС;
- Γ) область пространства, в которой РТС надежно выполняет функции, определенные ее назначением.

34) Разрешающая способность РТС – это...

- А) способность РТС раздельно измерять параметры близко расположенных целей;
- Б) способность РТС разрешать конфликты радиоэлектронной борьбы;
- В) способность РТС раздельно измерять параметры целей далеко расположенных друг от друга;
- Г) способность РТС измерять параметры цели, расположенной на очень большом расстоянии.

35) Выберите лишнее:

Радиолокационные станции принято классифицировать по происхождению принимаемого радиосигнала на:

- А) пассивные;
- Б) полупассивные;
- В) активные;
- Г) полуактивные.

36) Что иллюстрирует рис.2?

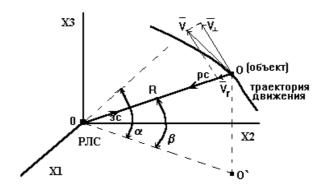


Рисунок 2

- А) определение геометрических параметров замеченного объекта;
- Б) определение параметров движения объекта;
- В) нахождение лишь скорости объекта;
- Г) нахождение лишь расстояния до объекта.

37) Для чего нужен антенный переключатель в РЛС?

- А) для того, чтобы иметь возможность работать с несколькими антеннами;
- Б) для того, чтобы передавать сигнал с одной антенны на несколько РЛС;
- В) для того, чтобы не сжечь приемник во время передачи зондирующего импульса;
- Γ) для того, чтобы не сжечь приемник во время паузы между зондирующими импульсами.

38) Диффузное рассеяние (ненаправленное излучение) возникает...

- А) ...при размерах облучаемых объектов, кратных нечетному количеству полуволн;
- Б) ... при облучении "гладких" поверхностей, размеры которых многократно превышают длину волны λ падающей радиоволны;

- В) ...при облучении больших поверхностей с шероховатостями;
- Г) ... при размерах облучаемых объектов, кратных четному количеству полуволн.
- 39) Рефракция радиоволн в атмосфере это...
 - А) наложение волн;
 - Б) огибание препятствий волнами с длиной волны большей, чем эти препятствия;
 - В) криволинейная траектория их распространения из-за атмосферных помех;
 - Г) криволинейная траектория их распространения из-за неоднородностей среды.
- 40) Что такое радионавигационный параметр (РНП)?
 - А) тактический параметр РЛС;
 - Б) технический параметр РЛС;
 - В) параметр радиосигнала, несущий информацию о координате или скорости объекта;
 - Г) параметр радиосигнала РЛС, зондирующего заданную область пространства.
- 41) О чем идет речь?
 - ... часть пространства (поверхности), в пределах которой обеспечивается нахождение координат объекта с погрешность, не превышающей максимальную.
 - А) рабочая зона РТС;
 - Б) рабочая зона радионавигационной станции (РНС);
 - В) зона покрытия РЛС;
 - Г) зона покрытия базовой станции.
- **42)** В диапазоне гектометровых волн (средних) под воздействием неоднородностей подстилающей поверхности и атмосферы наблюдается зависимость фазовой скорости распространения от частоты. Как называется данное явление?
 - А) дифракция скорости распространения;
 - Б) дисперсия скорости распространения;
 - В) доплеровский набег частоты;
 - Γ) нет верного ответа.
- 43) Что можно вычислить с помощью формулы 1?

$$T_{\mathbf{0}} \ge \frac{2D_{max}}{c} \frac{\theta_{\alpha}}{\alpha_{A}} \frac{\theta_{\beta}}{\beta_{A}} N \tag{1}$$

- А) период обращения антенны РЛС;
- Б) время приема отраженного сигнала;
- В) время, необходимое для обзора заданного объема пространства;
- Г) время, необходимое для передачи и получения отраженного от цели сигнала.
- 44) Что иллюстрируют рис. 3 и 4 соответственно?

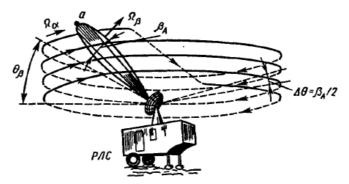


Рисунок 3

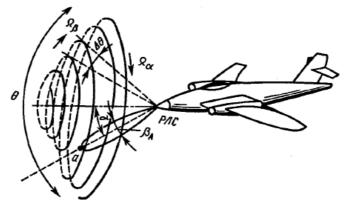
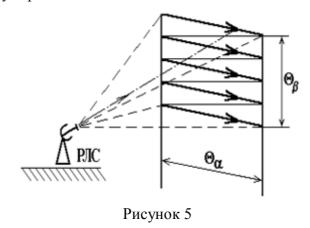


Рисунок 4

- А) работу РЛС с круговым и винтовым обзором;
- Б) работу РЛС с винтовым обзором и секторным;
- В) работу РЛС с винтовым и спиральным обзором;
- Г) работу РЛС со спиральным и секторным обзором.
- 45) Вставьте числа из табл.1, соответствующие пропущенным словам (фразам): Спектр импульсного сигнала, отраженного статичным объектом ... $(?)^1$..., а спектр импульсного сигнала, отраженного движущимся объектом ... $(?)^2$... при удалении объекта или ... $(?)^3$... при его приближении.


Таблица 1

(1)	переносится вверх по частоте
(2)	сжимается
(3)	не может совпадать со спектром зондирующего
(4)	переносится вниз по частоте
(5)	совпадает со спектром зондирующего
(6)	растягивается

- A) (3), (1), (4);
- Б) (5), (6), (2);
- B) (2), (4),(1);
- Γ) (5), (2), (6).
- 46) В чем различие фазового и импульсно-фазового методов измерения РНП?

- А) принцип действия фазовой РНС основан на измерении дальностей (или их разностей) до нескольких радиомаяков (РМ), в ИФРНС все то же самое, но измерение координат производится в два этапа: грубое измерение и точное;
- Б) принцип действия ИФРНС основан на измерении дальностей (или их разностей) до нескольких радиомаяков (РМ), в ФРНС все то же самое, но измерение координат производится в два этапа: грубое измерение и точное;
- В) существенных различий нет;
- Г) другой ответ.

47) Что иллюстрирует рис.5?

- А) секторный обзор;
- Б) строчно-кадровый обзор;
- В) винтовой обзор;
- Г) нет верного ответа.
- 48) Какие волны могут в течение года и независимо от времени суток беспрепятственно проникать через ионосферу в космос?
 - А) от 30 см до 30 м;
 - Б) до 3 см;
 - В) от 3 мм до 10 м;
 - Г) до 3 м.
- 49) Какими преимуществами обладает ЛЧМ-сигнал, при использовании его в РЛС?
 - А) обладает хорошей разрешающей способностью;
 - Б) способен скрываться под шумами;
 - В) имеет маленькую базу;
 - Г) А) и Б).
- 50) Устройство, предназначенное для оценки времени запаздывания сигналов РНС называется:
 - А) следящий измеритель;
 - Б) измеритель уровня;
 - В) дешифратор;
 - Г) секундомер.

- 51) О чем идет речь? (********) – это горизонтальная проекция скорости летательного аппарата (ЛА) относительно земной поверхности. А) радиальная скорость ЛА; Б) путевая скорость ЛА; В) воздушная скорость; Г) А) или Б). 52) О чем идет речь? (""") метод измерения путевой скорости и угла сноса заключается в измерении времени задержки между отраженными от подстилающей поверхности сигналами, принимаемыми разнесенными антеннами, расположенными на ЛА. А) корреляционный метод; Б) доплеровский метод; В) многолучевой метод; Γ) нет верного ответа. 53) Определение направления на источник принимаемого радиосигнала – это ... А) радиолокационное наведение; Б) радиопеленгование; В) радионаведение; Г) другой ответ. 54) При каком режиме работы РЛС используется одна антенна А) непрерывном; Б) импульсно-непрерывном; В) импульсном; Γ) хаотичном.
- 55) Пеленг это...
- А) команда уничтожить цель;
- Б) определения местоположения РЛС;
- В) определения параметров цели;
- Г) определение направления на цель.
- 56) Какой метод в радионавигации позволяет определить местоположение цели из одной точки с помощью трех координат
- А) дальномерный;
- Б) разностно-дальномерный;
- В) угломерный;
- Г) угломерно-дальномерный.

- 57) Что понимают под радиоэлектронной борьбой (РЭБ)?
- А) выявлению систем управления войсками и оружием противника, их радиоэлектронному подавлению;
- Б) защите своих систем управления войсками и оружием;
- В) противодействию радиоэлектронной разведке противника;
- Г) все перечисленное.

58) Сопоставьте цифры из выражения с буквами (на рис.6):

В состав активной ЛЛС входят: лазерный передатчик ЛП, содержащий лазер (1) и устройство модуляции излучения, а также передающую оптическую систему (2) с устройством сканирования излучения; оптический приемник ОП, содержащий приемную оптическую систему (3) (которая может быть совмещена с передающей) и фотоприемник (4); выходное (индикаторное) устройство (5).

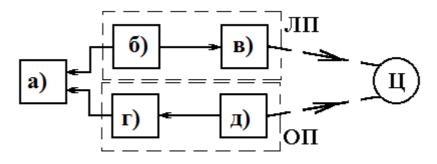


Рисунок 6 – Структурная схема ЛЛС

59) Какие выражения верны для расчета дальности действия ЛЛС?

A)
$$R_{\text{макс1}} = \sqrt{\frac{P_{\text{и}}Gk_{0}S_{\text{A}}\rho_{\text{Д}}(\alpha)}{\pi P_{\text{смин}}}}$$
, при $R_{\text{I}} < R_{\text{г}}$;

Б)
$$R_{_{MAKC2}} = \sqrt[4]{rac{P_{_{I\!I}}Gk_{_{0}}S_{_{A}}\sigma_{_{I\!I}}}{\pi^2\Theta_{_{\pi}}^2P_{_{CMHH}}}}$$
, при $R_2 > R_{_{\Gamma}}$;

B)
$$R_{\text{макс1}} = \sqrt{\frac{P_{\text{и}}Gk_{0}S_{A}\rho_{\text{Д}}(\alpha)}{\pi P_{\text{смин}}}}$$
, при $R_{\text{I}} > R_{\text{г}}$;

$$\Gamma) \ \, R_{_{MAKC2}} = \sqrt[4]{\frac{P_{_{\rm I\! I}} G k_{_{0}} S_{_{A}} \sigma_{_{I\! I}}}{\pi^2 \Theta_{_{I\! I}}^2 P_{_{CMUH}}}} \ , \ \, \text{при } R_2 \!\!<\!\! R_{_{\Gamma}}.$$

«УТВЕРЖДАЮ»
Председатель Ученого совета
Радиотехнического факультета
Муратов А.В
2012 г.

Лист регистрации изменений (дополнений) УМКД Радиотехнические системы

В УМКД вносятся следующие изменения (дополнения): из списка карты обеспеченности литературы исключены методические указания «Широкополосные системы передачи информации с фазоманипулированными сложными сигналами. Методические указания к выполнению курсовой работы » авторы Володько А.В., Ледовских В.И. как устаревшее. Изменения (дополнения) в УМКД обсуждены на заседании кафедры РЭУС .

Протокол № от « » 2012 г. Зав. кафедрой РЭУС Балашов Ю.С.

Изменения (дополнения) рассмотрены и одобрены методической комиссией факультета Радиотехнического факультета

Председатель методической комиссии

«Согласовано» зав. выпускающей кафедрой

РЭУС Балашов Ю.С.

Лист регистрации изменений (дополнений) УМКД Радиотехнические системы

В УМКД вносятся следующие изменения (дополнения): в УМК дисциплины включены фонд оценочных средств и контрольно-измерительные материалы. Изменения (дополнения) в УМКД обсуждены на заседании кафедры РЭУС .

Протокол № от « » 2013 г.

Зав. кафедрой РЭУС

Балашов Ю.С.

Изменения (дополнения) рассмотрены и одобрены методической комиссией факультета Радиотехнического факультета

Председатель методической комиссии

«Согласовано»

зав. выпускающей кафедрой

РЭУС Балашов Ю.С.

«УТВЕРЖДАЮ»
Председатель Ученого совета
Факультета Радиотехники
и электроники
Небольсин В.А
2014 г

Лист регистрации изменений (дополнений) УМКД Радиотехнические системы

В УМКД вносятся следующие изменения (дополнения): в список карты обеспеченности литературы включена дополнительная литература автора Волков В.Д. «Теория автоматического управления». Изменения (дополнения) в УМКД обсуждены на заседании кафедры РЭУС .

Протокол № от « » 2014Γ .

Зав. кафедрой РЭУС

Балашов Ю.С.

Изменения (дополнения) рассмотрены и одобрены методической комиссией факультета Радиотехнического факультета

Председатель методической комиссии

«Согласовано»

зав. выпускающей кафедрой

РЭУС Балашов Ю.С.