### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ загляенных Декан ФЭСУ Бурковский

«31» августа 2029 риерготики у

рнергетики и систем управления

### РАБОЧАЯ ПРОГРАММА

дисциплины «Химия»

Направление подготовки 13.03.02 Электроэнергетика и электротехника

Профиль Электромеханика

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2021

Автор программы

/Корнеева В.В./

Заведующий кафедрой химии и химической технологии материалов

/Рудаков О.Б /

Руководитель ОПОП

/Тикунов А.В./

Воронеж 2021

### 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

- 1.1. Цели дисциплины обеспечение фундаментальной химической подготовки, позволяющей будущим специалистам ориентироваться в научно- технической информации, использовать химические принципы и законы для формирования у студентов основ научного мышления, в том числе: пониманию границ применимости химических понятий и теорий; умению оценивать степень достоверности результатов теоретических и экспериментальных исследований; умению планировать химический и технический эксперимент и обрабатывать его результаты с использованием современных методов
- 1.2. Задачи освоения дисциплины: освоение основных химических законов, и пределов применимости этих законов для теоретического и экспериментального исследования профессиональных задач; изучение назначения и принципов действия основных химических методов, приобретение навыков работы с измерительными приборами и инструментами; приобретение навыков моделирования химических процессов и явлений

### 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Б1.011 «Химия» относится к дисциплинам базовой части блока Б1.

### 3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Химия» направлен на формирование следующих компетенций:

ОПК-3 - Способен применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач

| Компетенция | Результаты обучения, характеризующие<br>сформированность компетенции                                                                                                                                                                                                                                                                                                              |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ОПК-3       | Знать основные теоретические представления о строении атома, о природе химической связи в молекулах, зависимость химических свойств веществ от их строения, законы химической термодинамики и кинетики, растворы, основные закономерности протекания химических, электрохимических процессов, практически важных для технологического применения в профессиональной деятельности. |
|             | <b>Уметь</b> , применяя соответствующий физикоматематический аппарат, методы анализа и моделирования химических процессов, решать типовые химические задачи.                                                                                                                                                                                                                      |

**Владеть** навыками проведения химического эксперимента и обработки его результатов, навыками использования современных информационных технологий

### 4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Химия» составляет 3 з.е. Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

| Duran varabusă nabatu                 | Всего | Семестры |
|---------------------------------------|-------|----------|
| Виды учебной работы                   | часов | 2        |
| Аудиторные занятия (всего)            | 36    | 36       |
| В том числе:                          |       |          |
| Лекции                                | 18    | 18       |
| Лабораторные работы (ЛР)              | 18    | 18       |
| Самостоятельная работа                | 72    | 72       |
| Виды промежуточной аттестации - зачет | +     | +        |
| Общая трудоемкость                    |       |          |
| академические часы                    | 108   | 108      |
| 3.e.                                  | 3     | 3        |

### 5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

### 5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

| <b>№</b><br>п/п | Наименование темы                                              | Содержание раздела                                                                                                                                                                                                                                            | Лекц | Лаб.<br>зан. | CPC | Всего,<br>час |
|-----------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|-----|---------------|
| 1               | Основные понятия и законы химии                                | Основные понятия и законы химии. Классы неорганичеких соединений.                                                                                                                                                                                             | 2    | 4            | 12  | 18            |
| 2               | Строение атома. Периодическая система элементов Д.И.Менделеева | Ядерная модель атома. Двойственная природа электрона. Квантовые числа. Атомные орбитали. Три принципа распределения электронов в атомах. Периодическая система электронная структура атомов.                                                                  | 4    |              | 12  | 16            |
| 3               | Химическая связь                                               | Квантово-механические представления о механизме образования химической связи: метод валентной связи (МВС) и метод молекулярных орбиталей (ММО). Реакции окисления – восстановления.                                                                           | 2    | 4            | 12  | 18            |
| 4               | Основные законо-<br>мерности химиче-<br>ских процессов         | Основы химической термодинамики: $1^{\text{ый}}$ закон термодинамики Внутренняя энергия. Энтальпия. Термохимия. $2^{\text{ой}}$ закон термодинамики. Энтропия. Термодинамические потенциалы - критерии направленности химических реакций. Химическая кинетика |      | 4            | 12  | 20            |

|   |                               | от коррозии.                                                                                                                                                                                                                                                                                         |   |   |    |    |
|---|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|
|   |                               | равновесный электродный потенциал химические и концентрационные гальванические элементы Электролиз: законы Фараде, катодные и анодные процессы. Общие свойства металлов. Коррозия химическая и электрохимическая. Защита металлов                                                                    | 4 | 4 | 12 | 20 |
| 6 |                               | Гальванические элементы: возникновение двойного электрического слоя;                                                                                                                                                                                                                                 |   |   |    |    |
| 5 | Дисперсные системы. Растворы. | (принцип Ле – Шателье).  Классификация и общие свойства растворов. Законы Рауля и Генри. Следствия законов Рауля. Осмотическое давление. Растворы электролитов Реакции обмена в растворах электролитов. Ионное произведение воды. Водородный показатель. Произведение растворимости. Гидролиз солей. | 2 | 2 | 12 | 16 |
|   |                               | и химическое равновесие: скорость химических реакций, зависимость от концентрации, температуры. Химическое равновесие и его смещение                                                                                                                                                                 |   |   |    |    |

### 5.2 Перечень лабораторных работ

- 1. Основные понятия и законы химии. Классы неорганических соединений.
- 2. Закономерности изменения химических свойств элементов и их соединений в группах и периодах периодической системы. Окислительно-восстановительные реакции.
  - 3. Кинетика химических реакций и химическое равновесие
  - . Реакции обмена в растворах электролитов.
  - 4. Гальванические элементы. Электролиз.

### 6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

### 7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

## 7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

### 7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

| Компе-<br>тенция | Результаты обучения, характеризующие сформированность компетенции                                                                                                                                                                                                                                                                                                                 | Критерии<br>оценивания                                                      | Аттестован                                                    | Не аттестован                                                   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| ОПК-3            | Знать основные теоретические представления о строении атома, о природе химической связи в молекулах, зависимость химических свойств веществ от их строения, законы химической термодинамики и кинетики, растворы, основные закономерности протекания химических, электрохимических процессов, практически важных для технологического применения в профессиональной деятельности. | лабораторных работ. Активная работа на лабораторных занятиях                | Выполнение работ в срок, предусмотренный в рабочих программах | Невыполнение работ в срок, предусмотренный в рабочих программах |
|                  | Уметь, применяя соответствующий физико-математический аппарат, методы анализа и моделирования химических процессов, решать типовые химические задачи.                                                                                                                                                                                                                             | Анализировать и применять химические законы для решения практических задач. | Выполнение работ в срок, предусмотренный в рабочих программах | Невыполнение работ в срок, предусмотренный в рабочих программах |
|                  | Владеть навыками проведения химического эксперимента и обработки его результатов, навыками использования современных информационных технологий                                                                                                                                                                                                                                    | -                                                                           | Выполнение работ в срок, предусмотренный в рабочих программах | Невыполнение работ в срок, предусмотренный в рабочих программах |

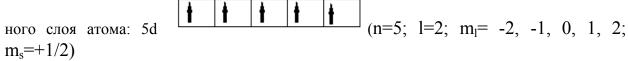
**7.1.2** Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются во 2 семестре для очной формы обучения по двухбалльной системе:

«зачтено»

«не зачтено»

| Компе-<br>тенция | Результаты обучения, характеризующие сформированность компетенции                                                                                                                                                                                                                  | Критерии<br>оценивания | Зачтено                     | Не зачтено           |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|----------------------|
| ОПК-3            | Знать основные теоретические представления о строении атома, о природе химической связи в молекулах, зависимость химических свойств веществ от их строения, законы химической термодинамики и кинетики, растворы, основные закономерности протекания химических, электрохимических |                        | Выполнение теста на 70-100% | Выполнение менее 70% |

| процессов, практически важных для технологического применения в профессиональной деятельности;                                                                                        |                                                           |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|
| уметь, применяя со-<br>ответствующий фи-<br>зико-математический<br>аппарат, методы ана-<br>лиза и моделирова-<br>ния химических<br>процессов, решать<br>типовые химические<br>задачи; | Продемонстрирова н верный ход решения в большинстве задач | Задачи не решены |
|                                                                                                                                                                                       | Продемонстрирова н верный ход решения в большинстве задач | Задачи не решены |


# 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

## 7.2.1 Примерный перечень заданий для подготовки к тестированию

- . В перечне формул кислот 1) HNO $_3$  2) H $_2$ SO $_3$  3) HBr 4) 2,4) H $_3$ PO $_4$  5) HCl укажите номера тех, которые образуют кислые соли. (2,4)
- 2. Укажите, в каком из приведенных рядов
- 1) CO<sub>2</sub>, SO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>
- 2) CaO, N<sub>2</sub>O<sub>5</sub>, Al<sub>2</sub>O<sub>3</sub>
- 3) MgO, ZnO,  $Al_2O_3$
- 4) CO, NO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>

все вещества взаимодействуют со щелочами. (1)

- 3. Укажите квантовое число 1) главное 2) орбитальное 3) магнитное 4) спиновое, уровень которого в электронной оболочке атома определяет энергетический уровень. (1)
- 4. Для атома с электронной формулой внешних электронов  $4s^24p^1$  укажите атомный номер элемента. (31)
- 5. Установите последовательность расположения соединений
- 1)  $K_2O$  2) MgO 3) CaO 4) SO<sub>3</sub> 5) Al<sub>2</sub>O<sub>3</sub> по увеличению полярности химической связи. (4,5,2,3,1)
- **6**. Укажите молекулу 1)  $CH_4$  2)  $BF_3$  3) CO 4)  $CO_{2}$ , в которой имеются  $sp^2$ -гибридные орбитали.(  $BF_3$ )
- **7.** Расположите следующие химические элементы: 1) F 2) Na 3) C 4) О в порядке возрастания их электроотрицательности. (Na, C ,O, F)
- 8. Определить порядковый номер в Периодической системе элемента, имеющего электронную структуру, выраженную формулой:  $1s^22s^22p^63s^23p^63d^34s^2$ . (23)
- 9. К какому типу химической связи относится связь между атомами в молекулах: а) КІ, б) Вг<sub>2</sub>, в) металла Sn. (а) ионная, б) ковалентная, в) металлическая)
- 10. Опишите четырьмя квантовыми числами следующую электронную структуру валент-



- 11. Напишите уравнение диссоциации HCN. (HCN =H $^++$ CN $^-$ )
- 12. Из каких солей  $Pb(NO_3)_2$ ,  $Al_2(SO_4)_3$ ,  $CuSO_4$ ,  $AgNO_3$ ,  $ZnSO_4$  металл может быть вытеснен никелем ( $Pb(NO_3)_2$ ,  $CuSO_4$ ,  $AgNO_3$ )
- 13. Куда сместится равновесие реакции  $2NO+O_2=2NO_2$  в результате увеличения в системе давления. (в сторону прямой реакции)
- 14. Для обратимой реакции  $CaCO_3(\kappa) \Leftrightarrow CaO(\kappa) + CO_2(r)$ ;  $\Delta H^\circ = 177,5$  кДж укажите направление смещения равновесия (1 влево, 2 вправо, 3 не смещается) при повышении температуры. (вправо)

### 7.2.2 Примерный перечень заданий для решения стандартных задач

При окислении 2 г двухвалентного металла образовалось 2,8 г оксида. Определите количество провзаимодействовавшего кислорода и атомную массу металла. (0,8 г и 40)

- 2.В обратимой реакции  $2SO_2(\Gamma)+O_2(\Gamma) \Leftrightarrow 2SO_3(\Gamma)$  равновесие установилось при следующих концентрациях веществ (моль/л):  $[O_2] = 0.3$ ;  $[SO_2] = 0.7$ ;  $[SO_3] = 0.5$ . Вычислите константу равновесия реакции. (1,7)
- 3. Вычислите электродный потенциал цинка, опущенный в раствор его соли с активностью ионов  $Zn^{2+}$  0,001 моль/л. (-0,85)
- **4.** Из 2,0 г двухвалентного металла образовалось 2,8 г оксида. Определите:\_число атомов в химической формуле оксида. (2)
- **5** При окислении 2,81 г кадмия получено 3,21 г оксида кадмия. Вычислить эквивалент кадмия. (56,2)
- **6.** Вычислить эквивалент  $H_2SO_4$  в реакциях обмена, в результате которых образуется: а) кислые соли  $MeHSO_4$ ; б) нормальные соли  $MeSO_4$ .(a)98, б)49)
- 7. Начальные концентрации исходных веществ реакции, протекающей по уравнению  $2NO+O_2=2NO_2$  равны NO=0.06 моль/л,  $O_2=0.10$  моль/л. Вычислить концентрации  $O_2$  и  $NO_2$ , когда NO станет равным 0.04 моль/л.  $(O_2=-0.01$  моль/л,  $NO_2=0.02$  моль/л.)
- 8. Во сколько раз увеличится скорость химической реакции при повышении температуры от 40 до  $200\,^{\circ}$ С, принимая температурный коэффициент скорости реакции равным 2. ( $2^{16}$  или 65536раз)
- 9. Вычислить константу равновесия К для обратимой реакции  $CO+H_2O=CO_2+H_2$ , если начальные концентрации исходных веществ равны CO=0.10 моль/л,  $H_2O=0.40$  моль/л, а в равновесии образовалось  $CO_2=0.08$  моль/л (1)
- **10**. Вычислить титр 0,1 н. раствора NaCl. (0,00585 г/мл)

## 7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. При электролизе водного раствора NaOH на аноде выделилось 2,8 л кислорода (н.у.). Сколько водорода выделилось на катоде: а) 2,8 л; б) 5,6 л; в) 22.4 л? (5,6 л)
- 2. На сколько изменится потенциал цинкового электрода, если раствор соли цинка, в который он погружён, разбавить в 10 раз: а) возрастает на 59 мВ; б) уменьшается на 59 мВ; в) возрастает на 30 мВ; г) уменьшается на 30 мВ? (г)
  - 3. Какой объём кислорода (н.у.) выделится при пропускании тока силою 6 А в те-

чение 30 минут через водный раствор КОН? (627 мл)

- 4. При электролизе раствора хлорида меди (II) масса катода увеличилась на 3,2 г. Что произошло при этом на медном аноде: а) выделилось 0,112 л  $Cl_2$ ; б) выделилось 0,56 л  $O_2$ ; в) перешло в раствор 0,1 моля  $Cu^{2+}$ ; г) перешло в раствор 0,05 моля  $Cu^{2+}$ ? (г)
- 5. Имеется гальванический элемент <sup>(-)</sup>Pb | Pb  $^{2+}$  |  $Ag^+$  |  $Ag^+$  |  $Ag^{(+)}$ . Как изменится его ЭДС, если в раствор, содержащий ионы свинца, добавить сероводород: а) увеличится; б) уменьшится; г) останется неизменной? ( а)
- 6. Какое количество электричества потребуется для выделения из раствора: а) 2 г водорода; б) 2 г кислорода?  $(1,93\cdot10^5 \, \text{Кл}; \, 2,41\cdot10^4 \text{Кл})$
- 7. Какой процесс протекает при электролизе водного раствора хлорида олова (II) на оловянном аноде: a) Sn  $\leftrightarrow$  2e Sn<sup>2+</sup>; б) 2Cl<sup>-</sup>  $\leftrightarrow$  Cl<sub>2</sub> + e<sup>-</sup>; в) 2H<sub>2</sub>O  $\leftrightarrow$  O<sub>2</sub> + 4H<sup>+</sup> + 4e<sup>-</sup>? (a)
- 8.При электролизе водного раствора  $Cr_2(SO_4)_3$  током силой 2 A масса катода увеличилась на 8 г. в течение какого времени проводился электролиз? (6,19 ч.)
- 9. Гальванический элемент составлен из стандартного цинкового электрода и хромового электрода, погружённого в раствор, содержащий ионы  $Cr^3$ . При какой концентрации ионов  $Cr^{3+}$  ЭДС этого элемента будет равна нулю? (0,068 моль/л)
- 10. За 10 минут из раствора платиновой соли ток силой5А выделил1,517 г Рt. Определить эквивалентную массу платины? (48,8 г)

### 7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Способы получения солей.
- 2. Квантовые числа и их физический смысл; s-, p, d и f-орбитали,
- 3. Три принципа распределения электронов в многоэлектронных атомах. Электронные и электронографические формулы.
- 4. На каком основании свойства элементов в периодической системе Д.И. Менделеева меняются периодически?
- 5. Как и почему изменяются в периодах и группах радиус атома. Потенциал ионизации, сродство к электрону, электроотрицательность?
- 6. Ковалентная связь и её характеристики. Метод валентных связей (МВС).
- Ионная связь.
- 8. Метод молекулярных орбиталей (ММО) и металлическая связь.
- 9. Следствия закона Гесса и расчёты тепловых эффектов химических реакций.
- 10. Энергия Гиббса и направленность химических реакций.
- 11. Скорость химических реакций и её зависимость от концентрации и температуры.
- 12. Константа химического равновесия. Принцип Ле Шателье о смещении химического равновесия.
- 13. Способы выражения концентрации растворов.
- 14. Почему растворы кипят при более высокой температуре и кристаллизуются при более низкой, чем чистый растворитель?
- 15. Растворы слабых и сильных электролитов (сходство и различие. Реакции обмена в растворах электролитов.)
- 16. Понятие электродного потенциала. Формула Нернста. Расчёт ЭДС гальванического элемента.
- 17. Законы Фарадея. Катодные и анодные процессы электролиза. Применение электролиза в промышленности.

- 18.Высокотемпературная газовая коррозия.
- 19. В чём суть электрохимической коррозии металлов.
- 20. Электрохимические методы защиты металлов от коррозии.

## **7.2.5 Примерный перечень вопросов для подготовки к экзамену** Не предусмотрено учебным планом

### 7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Студенту выдается 10 тестовых вопросов из перечня заданий. За каждый правильный ответ выставляется 1 балл.

Оценка «зачтено» выставляется студенту, набравшему 5 и более баллов.

Оценка «неаттестован» выставляется студенту, набравшему менее 5 баллов.

При получении оценки «зачтено» требуемые в рабочей программе знания, умения, владения по соответствующим компетенциям на промежуточном этапе считаются достигнутыми.

Методика проведения.

В аудитории для практических занятий, в письменной форме, групповой способ, в течение 60 минут, без использования справочной литературы и средств коммуникации (по просьбе студента может быть дана таблица элементов Д.И. Менделеева и др. таблицы), результат - на следующем занятии.

7.2.7 Паспорт оценочных материалов

|       | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                        |                                      |                                                 |
|-------|----------------------------------------------------------------|--------------------------------------|-------------------------------------------------|
| № п/п | Контролируемые разделы (темы) дисциплины                       | Код<br>контролируемой<br>компетенции | Наименование оценочного средства                |
| 1     | Основные понятия и законы хими                                 | ОПК-3                                | контрольная работа                              |
| 2     | Строение атома. Периодическая система элементов Д.И.Менделеева | ОПК-3                                | контрольная работа                              |
| 3     | Химическая связь<br>Реакции окисления восстановления.          | ОПК-3                                | контрольная работа, защита лабораторной работы  |
| 4     | Основные закономерности химических процессов                   | ОПК-3                                | тест, защита лабораторной работы                |
| 5     | Дисперсные системы. Растворы                                   | ОПК-3                                | контрольная работа, защита лабораторной работы, |
| 6     | Электрохимические системы.<br>процессы                         | ОПК-3                                | тест, защита лабораторной работы                |

## 7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется с использованием выданных тестзаданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

### 8 УЧЕБНО- МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

## 8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Коровин Н.В. Общая химия: учебник. М.: Высш. шк., 2005. 557 с.
- 2. Глинка Н.Л. Общая химия: учебник для бакалавров. / Н.Л. Глинка; под ред. В.А. Попкова, А.В Бабкова. -18-е изд., перераб и доп.- М.: Изд-во Юрайт, 2012.- 898 с.
- 3. Глинка Н.Л. Задачи и упражнения по общей химии: учебное пособие для вузов / Н.Л. Глинка; под ред. В. А. Рабиновича, Х. М. Рубиной. М.: Интеграл-Пресс, 2014.- 240 с.
- 4. Корнеева В.В. Методические указания для самостоятельной подготовки и выполнения лабораторных работ № 1-6 по дисциплине «Химия» / В.В. Корнеева, А.Н. Корнеева, В.А. Небольсин // Воронеж: ФГБОУ ВО «ВГТУ»,2015.-50 с.
- 5. Корнеева В.В. Методические указания для самостоятельной подготовки и выполнения лабораторных работ № 7-10 по дисциплине «Химия» / В.В. Корнеева, А.Н. Корнеева, В.А. Небольсин // Воронеж: ФГБОУ ВО «ВГТУ»,2015.-39 с.
- 6. Корнеева В.В. Методические указания для самостоятельной работы и контроля знаний (тестирование) по теме «Общие свойства металлов. Элеклитрохимические процессы». / В.В. Корнеева, А.Н. Корнеева, В.А. Небольсин // ВВоронеж: ГОУВПО «ВГТУ», 2009, 38 с.
- 7. Маршалкин, М. Ф. Химия [Электронный ресурс]: учебное пособие / VМ.Ф.. Маршалкин, И. С. Григорян, Д. Н. Ковалев. Электрон. текстовые дданные. Ставрополь: Северо-Кавказский федеральный университет, 2015. 228 с. 2227-8397. Режим доступа:http://www.iprbookshop.ru/63225.html

- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:
  - 8.2.1 Программное обеспечение
  - Windows Professional 8.1 (7 и 8) Single Upgrade MVL A Each Academic
  - OpenOffice;
  - Adobe Acrobat Reader
  - Internet explorer.
- 8.2.2 Ресурсы информационно-телекоммуникационной сети «Интернет»
  - Российское образование. Федеральный портал. http://www.edu.ru/
  - Образовательный портал ВГТУ https://education.cchgeu.ru/
  - 8.2.3 Информационные справочные системы
  - http://window.edu.ru
  - https://wiki.cchgeu.ru/
  - 8.2.4 Современные профессиональные базы данных
- Химические науки и образование в России
- http://www.chem.msu.su/rus/
- Наносистемы: физика, химия, математика http://nanojournal.ifmo.ru/
- Химическая техника https://chemtech.ru/
- Полимерные композиционные материалы http://lkmprom.ru/clauses/materialy/

### 9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Лекционная аудитория, оснащённая наглядными пособиями. Химическая лаборатория 303/1

### 10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ «ХИМИЯ»

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия не предусмотрены учебным планом.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Выполнение курсовой работы не предусмотрено учебным планом.

| В | вид учебных | Деятельность студента    |
|---|-------------|--------------------------|
| _ | 112         | Achien Brice is of Achie |

| занятий         |                                                                                                                      |
|-----------------|----------------------------------------------------------------------------------------------------------------------|
| Лекция          | Написание конспекта лекций: кратко, схематично, последовательно                                                      |
| V1V1111111      | фиксировать основные положения, выводы, формулировки, обобще-                                                        |
|                 | ния; помечать важные мысли, выделять ключевые слова, термины.                                                        |
|                 | Проверка терминов, понятий с помощью энциклопедий, словарей,                                                         |
|                 | справочников с выписыванием толкований в тетрадь. Обозначение                                                        |
|                 | вопросов, терминов, материала, которые вызывают трудности, поиск                                                     |
|                 | ответов в рекомендуемой литературе. Если самостоятельно не удается                                                   |
|                 | разобраться в материале, необходимо сформулировать вопрос и за-                                                      |
|                 | дать преподавателю на лекции или на практическом занятии.                                                            |
| Лабораторная    | Лабораторные работы позволяют научиться применять теоретические                                                      |
| работа          | знания, полученные на лекции при решении конкретных задач. Чтобы                                                     |
|                 | наиболее рационально и полно использовать все возможности лабо-                                                      |
|                 | раторных для подготовки к ним необходимо: следует разобрать лек-                                                     |
|                 | цию по соответствующей теме, ознакомится с соответствующим раз-                                                      |
|                 | делом учебника, проработать дополнительную литературу и источни-                                                     |
|                 | ки, решить задачи и выполнить другие письменные задания.                                                             |
| Самостоятельная | Самостоятельная работа студентов способствует глубокому усвоения                                                     |
| работа          | учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие:   |
|                 | - работа с текстами: учебниками, справочниками, дополнительной                                                       |
|                 | литературой, а также проработка конспектов лекций;                                                                   |
|                 | - выполнение домашних заданий и расчетов;                                                                            |
|                 | - выполнение домашних задании и расчетов,<br>- работа над темами для самостоятельного изучения;                      |
|                 | - раоота над темами для самостоятельного изучения,<br>- участие в работе студенческих научных конференций, олимпиад; |
|                 | - подготовка к промежуточной аттестации.                                                                             |
| Подготовка к    | Готовиться к промежуточной аттестации следует систематически, в                                                      |
| промежуточной   | течение всего семестра. Интенсивная подготовка должна начаться не                                                    |
| аттестации      | позднее, чем за месяц-полтора до промежуточной аттестации. Данные                                                    |
| иттостиции      | перед зачетом три дня эффективнее всего использовать для повторе-                                                    |
|                 | ния и систематизации материала.                                                                                      |
|                 | пил и спетематизации материала.                                                                                      |