МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

Декан дорожно транспортного факультельный выгуста 2021 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Сопротивление материалов»

Специальность 23.05.01 Наземные транспортно-технологические средства

Специализация $\underline{\Pi}$ одъемно-транспортные, строительные, дорожные средства \underline{u} оборудование

Квалификация выпускника инженер

Нормативный период обучения 5 лет

Форма обучения очная

Год начала подготовки 2021

Автор программы

/Степанов С.Д./

Заведующий кафедрой Строительной механики

/Козлов В.А./

Руководитель ОПОП

/Жилин Р.А./

Воронеж 2021

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Дисциплина «Сопротивление материалов» имеет своей целью подготовить будущего специалиста к решению простейших задач сопротивления материалов на расчет строительных конструкций.

1.2. Задачи освоения дисциплины

Задачи дисциплины - дать студенту фундаментальные знания о напряженно-деформированном состоянии стержней и стержневых систем под действием различных нагрузок, навыки о методах решения задач расчета строительных конструкций на прочность, жесткость и устойчивость. При этом конструкция должна быть экономичной и надежной в эксплуатации.

Приобретенные знания способствуют формированию инженерного мышления

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Сопротивление материалов» относится к дисциплинам обязательной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Сопротивление материалов» направлен на формирование следующих компетенций:

УК-1 - Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий

ОПК-1 - Способен ставить и решать инженерные и научно-технические задачи в сфере своей профессиональной деятельности и новых междисциплинарных направлений с использованием естественнонаучных, математических и технологических моделей.

Компетенция	Результаты обучения, характеризующие сформированность компетенции	
УК-1	знать основы расчета строительных	
	конструкций; основы системного подхода,	
	необходимого для решения задачи; принципы	
	распознавания и анализа задач сопротивления	
	материалов в профессиональном контексте;	
	подбирает методы решения задач	
	сопротивления материалов;	
	уметь самостоятельно использовать основы	
	сопротивления материалов для решения задач в	
	профессиональном контексте, основы	
	системного подхода, необходимого для	
	решения задачи; применять принципы	
	распознавания и анализа задач сопротивления	
	материалов в профессиональном контексте;	

	использовать методы решения задач			
	сопротивления материалов;			
	владеть навыками основ расчета строительных			
	конструкций, подбора методов решения и			
	анализа задач сопротивления материалов в			
	профессиональном контексте;			
ОПК-1	знать основные принципы, положения и			
	гипотезы сопротивления материалов, методы			
	расчета элементов конструкций при различных			
	силовых, деформационных и температурных			
	воздействиях, прочностные характеристики и			
	другие свойства конструкционных материалов;			
	уметь грамотно составлять расчетные схемы,			
	определять теоретически и экспериментально			
	внутренние усилия, напряжения, деформации			
	перемещения, подбирать необходимые размеры			
	сечений стержней из условий прочности,			
	жесткости и устойчивости;			
	владеть навыками определения			
	напряженно-деформированного состояния			
	стержней при различных воздействиях с			
	помощью теоретических методов;			
	определения с помощью экспериментальных			
	методов механических характеристик			
	материалов; выбора конструкционных			
	материалов и форм, обеспечивающих			
	требуемые показатели надежности,			
	безопасности, экономичности и эффективности			
	сооружений.			

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Сопротивление материалов» составляет 8 з.е.

Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Виды учебной работы		Семестры		
		3	4	
Аудиторные занятия (всего)	108	54	54	
В том числе:				
Лекции	36	18	18	
Практические занятия (ПЗ)	36	18	18	
Лабораторные работы (ЛР)	36	18	18	
Самостоятельная работа	108	81	27	

Часы на контроль	72	45	27
Виды промежуточной аттестации - экзамен	+	+	+
Общая трудоемкость:			
академические часы	288	180	108
зач.ед.	8	5	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) Содержание разделов дисциплины и рас **5.1** Содержание распределение трудоемкости по видам занятий

очная форма обучения

очная форма обучения								
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	Лаб. зан.	CPC	Всего, час	
1	Основные понятия. Уравнение равновесия отсеченной части прямого бруса. Центральное растяжение и сжатие стержней.	Задачи дисциплины ее место среди других. Внешние и внутренние силовые факторы. Метод сечений. Напряжение деформаций. Основные гипотезы и принципы. Условие прочности и жесткости. Уравнение равновесия отсеченной части прямого бруса. Понятие о продольной и поперечной силах, изгибающих и крутящем моменте в поперечном сечении бруса. Простевшие виды напряженно -деформированного состояния бруса. Центральное растяжение и сжатие прямых стержней. Расчет деформаций на основе закона Гука. Проверка прочности и жесткости.	6	6	6	12	30	
2	Геометрические характеристики поперечных сечений стержней	Площадь, статические моменты, центр тяжести, моменты инерций сечений. Главные оси и главные моменты инерции. Главный эллипс инерции, радиусы инерции.	2	2	-	10	14	
3	Механические свойства и характеристики основных групп строительных материалов при растяжении и сжатии.	Опытные изучения механических свойств основных групп строительных материалов при испытании на растяжение (сжатие). Определение механических свойств и характеристик.	2	-	6	6	14	
4	Теория прочности материалов.	Главные напряжения, площадки (сечения) и деформации. Основные критерии возникновения предельных состояний для хрупких и пластических тел. Гипотезы прочности. Эквивалентное (приведенное) напряжение. Нормативная и расчетная нагрузки. Коэффициент надежности по нагрузке. Нормативное и расчетное сопротивление.	4	4	4	6	18	
5	Расчет простых балок. Понятие о поперечной силе и изгибающем моменте. Построение эпюр поперечных сил, изгибающих моментов в балках при плоском изгибе	Опорные реакции. Порядок построения эпюр поперечных сил изгибающих моментов. Дифференциальные зависимости при изгибе. Проверки.	4	6	4	16	30	
6	Напряжение в сечениях балки. Подбор размеров поперечного сечения. Расчет прочности.	Нормальные напряжения. Построение эпюр. Подбор сечений из условия прочности. Формула Журавского для расчета касательных напряжений с построением эпюр. Порядок расчета главных напряжений, расположение главных сечений,	6	6	4	16	32	

		приведенных напряжений, коэффициентов запаса прочности.					
7	Деформации балок.	Дифференциальное уравнение оси изогнутой балки, его интегрирование с помощью метода выравнивания постоянных интегрирования. Проверка жесткости балки.	2	2	2	6	12
8	Чистый сдвиг. Свободное кручение прямых стержней.	Расчет главных напряжений и деформации при чистом сдвиге. Расчет касательных напряжений при кручении прямых стержней круглого и прямоугольного сечений. Закон Гука для расчета углов закручивания. Проверки прочности и жесткости. Механические свойства материалов при кручении.	1	1	4	6	12
9	Внецентренное растяжение (сжатие). Косой изгиб.	Расчет бруса на внецентренное растяжение (сжатие). Определение положения центра растяжения (давления). Ядро сечения. Вычисление напряжений при косом изгибе.	1	1	2	6	10
10	Устойчивость сжатых стержней. Продольно-поперечный изгиб	Статический критерий потери устойчивости равновесных форм стержней. Гибкость, расчет критической силы по формулам Эйлера и Ясинского. Расчет устойчивости с помощью коэффициента продольного изгиба. Расчет прогибов и напряжений при продольно-поперечном изгибе стержнейю	4	4	4	12	24
11	Концентрация напряжений. Усталость материалов.	Коэффициент концентрации напряжений. Формула Колосова. Испытание на выносливость. Предел выносливости.	2	2	-	6	10
12	Расчет движущихся с ускорением элементов конструкций. Удар.	Динамическое нагружение и динамический коэффициент. Расчетная модель при ударе. Учет распределенной массы стержня при ударе.	2	2	-	6	10
		Итого	36	36	36	108	216

5.2 Перечень лабораторных работ

- 1. Демонстрация принципа Сен-Венана.
- 2. Определение модуля упругости и коэффициента Пуассона стали при растяжении.
- 3. Центральное растяжение образца круглого поперечного сечения из малоуглеродистой стали.
- 4. Центральное сжатие образца круглого поперечного сечения из малоуглеродистой стали.
- 5. Центральное растяжение чугунного образца круглого поперечного сечения.
- 6. Центральное сжатие чугунного образца круглого поперечного сечения.
 - 7. Растяжение вдоль волокон деревянного образца.
 - 8. Сжатие вдоль волокон деревянного образца.
 - 9. Смятие деревянного образца поперек волокон.
 - 10. Кручение стального стержня круглого поперечного сечения.
- 11. Скручивание до разрушения стального стержня сплошного круглого поперечного сечения.
 - 12. Скручивание до разрушения чугунного стержня сплошного

круглого поперечного сечения.

- 13. Определение напряжений при плоском изгибе стальной балки двутаврового поперечного сечения.
- 14. Определение угловых и линейных перемещений балки при поперечном плоском изгибе.
 - 15. Внецентренное растяжение стальной полосы.
 - 16. Испытание на устойчивость центрально сжатого стержня.
 - 17. Устойчивость плоской формы изгиба балки.
 - 18. Определение положения центра изгиба.
 - 19. Растяжение полосы, ослабленной круглым отверстием.

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
УК-1	знать основы расчета строительных конструкций; основы системного подхода, необходимого для решения задачи; принципы распознавания и анализа задач сопротивления материалов в профессиональном контексте; подбирает методы решения задач сопротивления материалов;	Полное или частичное посещение лекционных и практических занятий. Участие в работе над решением задач и в выполнении лабораторных работ.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнен ие работ в срок, предусмотре нный в рабочих программах
	уметь самостоятельно использовать основы сопротивления материалов для решения задач в профессиональном контексте, основы системного подхода, необходимого для решения задачи; применять принципы распознавания и анализа задач сопротивления материалов в профессиональном контексте; использовать методы решения задач сопротивления материалов;	Полное или частичное посещение лекционных и практических занятий. Решение задач по индивидуальным заданиям, подготовка к лабораторным занятиям и их выполнение.	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнен ие работ в срок, предусмотре нный в рабочих программах
	владеть навыками основ расчета строительных конструкций, подбора методов решения и анализа задач	Полное или частичное посещение лекционных и практических занятий.	Выполнение работ в срок, предусмотренный	Невыполнен ие работ в срок,

	сопротивления материалов в	Решение задач по	в рабочих	предусмотре
	профессиональном контексте;	индивидуальным	программах	нный в
		заданиям, подготовка к		рабочих
		лабораторным занятиям		программах
		и их выполнение.		
ОПК-1	знать основные принципы,	Полное или частичное	Выполнение	Невыполнен
	положения и гипотезы	посещение лекционных	работ в срок,	ие работ в
	сопротивление материалов, методы	и практических занятий.		срок,
	расчета элементов конструкций при	Участие в работе над	в рабочих	предусмотре
	различных силовых,	решением задач и в	программах	нный в
	деформационных и температурных	выполнении		рабочих
	воздействиях, прочностные	лабораторных работ.		программах
	характеристики и другие свойства			
	конструкционных материалов;			
	уметь грамотно составлять	Полное или частичное	Выполнение	Невыполнен
	расчетные схемы, определять	посещение лекционных	работ в срок,	ие работ в
	теоретически и экспериментально	и практических занятий.		срок,
	внутренние усилия, напряжения,	Решение задач по	в рабочих	предусмотре
	деформации и перемещения,	индивидуальным	программах	нный в
	подбирать необходимые размеры	заданиям, подготовка к		рабочих
	сечений стержней из условий	лабораторным занятиям		программах
	прочности, жесткости и	и их выполнение.		
	устойчивости;			
	владеть навыками определения	Полное или частичное	Выполнение	Невыполнен
	напряженно-деформированного	посещение лекционных	работ в срок,	ие работ в
	состояния стержней при различных	и практических занятий.		срок,
	воздействиях с помощью	Решение задач по	в рабочих	предусмотре
	теоретических методов;	индивидуальным	программах	нный в
	определения с помощью	заданиям, подготовка к		рабочих
	экспериментальных методов	лабораторным занятиям		программах
	механических характеристик	и их выполнение.		
	материалов; выбора			
	конструкционных материалов и			
	форм, обеспечивающих требуемые			
	показатели надежности,			
	безопасности, экономичности и			
	эффективности сооружений.			

7.1.2 Этап промежуточного контроля знаний

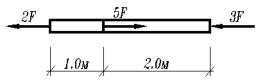
Результаты промежуточного контроля знаний оцениваются в 3, 4 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

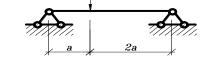
«хорошо»;

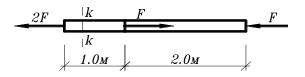
«удовлетворительно»;

«неудовлетворительно».

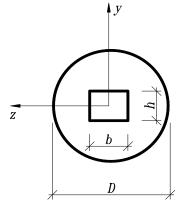

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
УК-1	знать основы расчета строительных конструкций; основы системного подхода, необходимого для решения задачи; принципы распознавания и анализа задач сопротивления материалов в профессиональном контексте; подбирает методы решения задач сопротивления материалов;	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	уметь самостоятельно	Решение	Задачи	Продемонстр	Продемонстр	Задачи не

	T			ı		
	использовать основы сопротивления материалов для решения задач в профессиональном контексте, основы системного подхода, необходимого для решения задачи; применять принципы распознавания и анализа задач сопротивления материалов в профессиональном контексте; использовать методы решения задач сопротивления материалов; владеть навыками основ расчета строительных конструкций, подбора методов решения и анализа задач сопротивления материалов в профессиональном контексте;	етандартных практических задач Решение прикладных задач в конкретной предметной области	решены в полном объеме и получены верные ответы Задачи решены в полном объеме и получены верные ответы	ирован верный ход решения всех, но не получен верный ответ во всех задачах Продемонстр ирован верный ход решения всех, но не получен верный ответ	ирован верный ход решения в большинстве задач Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
				во всех задачах		
ОПК-1	знать основные принципы, положения и гипотезы сопротивление материалов, методы расчета элементов конструкций при различных силовых, деформационных и температурных воздействиях, прочностные характеристики и другие свойства	Тест	Выполнение теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	конструкционных материалов; уметь грамотно составлять расчетные схемы, определять теоретически и экспериментально внутренние усилия, напряжения, деформации и перемещения, подбирать необходимые размеры сечений стержней из условий прочности, жесткости и устойчивости;	Решение стандартных практических задач	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
		задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонстр ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
<u> </u>	 72 Примерии ій п	<u> </u>		<u> </u>		

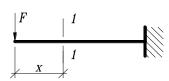

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)


7.2.1 Примерный перечень заданий для подготовки к тестированию

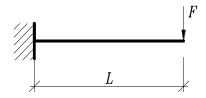
- 1. Среда называется, если ее свойства не зависят от координат точек.
- 1) Сплошной; 2) однородной; 3) изотропной; 4) упругой; 5) ортотропной.
- **2.** Что такое статический момент плоского сечения относительно заданной оси.
 - 1) Произведение площади на квадрат расстояния до оси.
 - 2) Произведение площади на расстояние до оси.
- 3) $\int yzdA$;
- $4)\int \rho dA$;
- 5) $\int \rho^2 dA$;
- **3.** Определить наибольшее по абсолютной величине продольное усилие.
- 1) 5F, 2) 3F, 3) 2F, 4) 7F, 5)8.



- 4. Определить реакцию опоры А.
- 1) $\frac{2}{3}F$, 2) $\frac{1}{2}F$, 3) $\frac{3}{2}F$, 4) 0,
- 5) F.



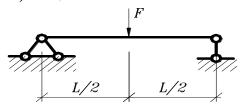
- **5.** Определить напряжения в сечении k-k стержня, если $A = 4cM^2$, $F = 10\kappa H$
 - 1) 25 Мпа, 2) 50Мпа, 3) 45 Мпа, 4) 30Мпа, 5) 60 Мпа.
- **6.** Укажите правильное значение момента инерции относительно оси х:
- 1) $J_z = \pi D^3 / 32 bh^2 / 6;$
- 2) $J_z = \pi D^4 / 64 b^3 h / 12;$
- 3) $J_z = \pi D^4 / 64 bh^3 / 12;$
- 4) $J_z = \pi D^4 / 12 bh^3 / 64;$
- 5) $J_z = \pi D^4 / 12 bh^3 / 64$;



- 7. Какие внутренние усилия возникают при поперечном изгибе
- 1) Продольная сила -N, M.
- 2) Изгибающий момент M_{z} , M_{x} .
- 3) Крутящий момент M_x , Q.
- 4) Поперечная сила Q_v , N.
- 5) Изгибающий момент и поперечная сила M_z, Q_y .
- **8.** Найти изгибающий момент в сечении 1-1:

1)
$$-\frac{Fx^2}{2}$$
; 2) $-Fx$; 3) $-\frac{Fx}{2}$; 4) $2Fx$;

5)
$$-Fx^2$$
;


10. Найти максимальную по абсолютной величине поперечную силу

1)
$$F$$
; 2) $\frac{F}{2}$; 3) $\frac{F}{3}$ 4) $\frac{F}{4}$; 5) $2F$;

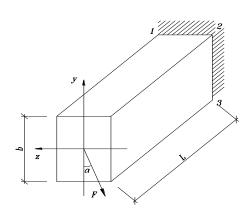
9. Найти максимальный по абсолютной величине изгибающий момент:

1)
$$\frac{Fl^2}{2}$$
; 2) $\frac{Fl}{2}$; 3) Fl ; 4) $4Fl$;

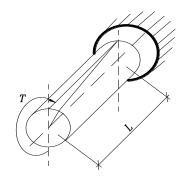
5)
$$Fl^2$$
;

11. Каким точным дифференциальным уравнением описывается изгибная ось балки?

1)
$$V'''(x) = \pm \frac{M_{(x)}}{EI};$$
 2) $\frac{V''(x)}{((1+(V')^2)^{\frac{3}{2}}} = \pm \frac{M(x)}{EI};$ 3) $\frac{V''(x)}{1+(V)^2} = \pm \frac{M(x)}{EI};$

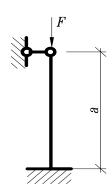

4)
$$V'''(x) = \pm M(x) \cdot EI$$
; 5) $V'''(x) = \pm M(x)$;

12. Укажите формулу закручивания круглого вала


1)
$$\varphi = \frac{M_x}{J\rho}l;$$
 2) $\varphi = \frac{M_x}{GJ\rho}\rho;$

3)
$$\varphi = \frac{M_x}{I\rho}$$
; 4) $\varphi = \frac{M_x}{GI\rho}$;

5)
$$\varphi = \frac{M_x}{GI \rho} l;$$


угла

13. По какой формуле определяется положение нейтральной линии

1)
$$tg\beta = \frac{\tau_{xy}}{\sigma_x - \sigma_{\text{max}}}$$
; 2) $tg\beta = \frac{J_y}{J_z}tg\alpha$;

3)
$$y=0$$
; 4) $tg 2\alpha = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$;

- **14.** Какой коэффициент приведения длины следует принять в формуле Эйлера для данной схемы закрепления стержня:
- 1) $\mu = 1.7$; 2) $\mu = 0.7$; 3) $\mu = 1.0$; 4) $\mu = 0.5$; 5) $\mu = 2$;
- 15. Покажите правильную запись формулы Эйлера

1)
$$F = \frac{\pi E l}{(l)^2}$$
; 2) $F = \frac{\pi E W}{(\mu l)}$; 3) $F = \frac{\pi^2 E l}{(\mu l)^2}$; 4) $F = \frac{\pi^2 E J}{(\mu l)^2}$; 5) $F = \frac{E \lambda}{(\mu l)^2}$;

7.2.2 Примерный перечень заданий для решения стандартных задач

- 1. Определение положения центра тяжести простых и сложных плоских фигур.
 - 2. Вычисление моментов инерции плоской фигуры.
 - 3. Вычисление напряжения при центральное растяжение (сжатие).
- 4. Определение деформаций при центральном растяжении (сжатии) с помощью закона Гука.
- 5. Определение напряжений на наклонной грани в случае плоского напряженного состояния.
- 6. Вычисление значений крутящих моментов, касательных напряжений и деформаций стержня при кручении.
- 7. Вычисление напряжений и определение положения нейтральной линии при внецентренном растяжении (сжатии).
- 8. Определение реакций опор в балках. Вычисление значений поперечных сил и изгибающих моментов в простых балках при поперечном плоском изгибе. Построение эпюр поперечных сил и изгибающих моментов.
- 9. Подбор размеров поперечного сечения балки при поперечном плоском изгибе.
- 10. Вычисление напряжений в балках при поперечном плоском изгибе. Построение эпюр напряжений. Проверка выполнения условия прочности.
- 11. Определение деформаций балки при плоском поперечном изгибе методом выравнивания постоянных интегрирования.
 - 12. Вычисление усилий в брусе в случае сложного сопротивления.
- 13. Определение напряжений и деформаций бруса в случае сложного сопротивления.
- 14. Вычисление крутящих моментов, углов закручивания при кручении. Построение эпюр. Вычисление напряжений при кручении.
 - 15. Вычисление критической силы с помощью формул Эйлера и Ясинского,

- с помощью коэффициента продольного изгиба при расчете центрально-сжатого стержня на устойчивость.
- 16. Подбор размеров поперечного сечения центрально-сжатого стержня с помощью формул Эйлера и Ясинского, с помощью коэффициента продольного изгиба при расчете на устойчивость.

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Вычисление геометрических характеристик сложной плоской фигуры:
 - 1.1. Вычисление статических моментов фигуры.
 - 1.2. Определение положения центра тяжести фигуры.
 - 1.3. Вычисление осевых и центробежных моментов инерции фигуры.
 - 1.4. Вычисление главных моментов инерции и положения главных осей.
- 1.5. Вычисление главных радиусов инерции и построение эллипса инерции.
- 2. Расчет столба на центральное растяжение (сжатие):
 - 2.1. Определений усилий при центральном растяжении.
 - 2.2. Вычисление напряжений в столбе.
 - 2.3. Вычисление деформаций.
 - 2.4. Построение эпюр продольной силы, напряжений и деформаций.
- 3. Расчет прочности в случае плоского напряженного состояния:
 - 3.1. Вычисление напряжений на наклонной грани треугольной пластинки.
 - 3.2. Вычисление главных напряжений.
 - 3.3. Определение положения главных сечений.
 - 3.4. Вычисление экстремальных значений касательных напряжений.
- 3.5.Выполнение рисунка с изображением главных площадок, площадок с экстремальным значением касательных напряжений.
- 4. Расчет простой балки на прочность:
 - 4.1. Определение реакций опор в балке от действия расчетных нагрузок.
 - 4.2. Определение поперечной силы и изгибающего момента в балке.
 - 4.3. Построение эпюр поперечной силы и изгибающего момента.
 - 4.4. Подбор размеров поперечного сечения балки.
 - 4.5. Вычисление напряжений в заданном сечении балки.
- 4.6. Определение главных напряжений и положения главных сечений в заданном сечении балки.
 - 4.7. Проверка выполнения условия прочности.
- 4.8. Выполнение рисунка с изображение двутаврового поперечного сечения балки, указанием выбранных точек для расчета напряжений, построением эпюр нормальных и касательных напряжений, коэффициента запаса прочности, приведенного напряжения, построением главных площадок.
- 5. Расчет простой балки на жесткость:
 - 5.1. Вычисление реакций опор от нормативной нагрузки.
- 5.2. Составление дифференциальных уравнений изогнутой оси балки по участкам. Решение уравнений.
- 5.3. Определение граничных условий и условий плавного сопряжений прогибов и углов поворота оси изогнутой балки.
 - 5.4. Вычисление постоянных интегрирования.

- 5.5. Вычисление максимального прогиба и углов поворота изогнутой балки.
- 5.6. Выполнение рисунка с изображение изогнутой оси балки с указанием максимального прогиба и углов поворота.
- 6. Расчет бруса в случае сложного сопротивления:
- 6.1. Вычисление продольной силы, поперечных сил, изгибающих и крутящего моментов.
 - 6.2. Построение эпюр вычисленных усилий.
 - 6.3. Определение деформаций оси бруса.
 - 6.4. Построение оси деформированного бруса.
- 7. Расчет центрально-сжатых стержней на устойчивость:
 - 7.1. Вычисление критической силы по формулам Эйлера или Ясинского.
- 7.2. Подбор размеров поперечного сечения стержня с помощью формул Эйлера или Ясинского.
- 7.3. Вычисление критической силы с помощью коэффициента продольного изгиба.
- 7.4. Подбор размеров поперечного сечения стержня с помощью коэффициента продольного изгиба.

7.2.4 Примерный перечень вопросов для подготовки к зачету Не предусмотрено учебным планом

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Задачи курса сопротивления материалов. Основные допущения. Понятие о деформациях и напряжениях. Виды напряженно-деформированного состояния тела.
- 2. Центральное растяжение. Закон Гука. Модуль упругости, коэффициент поперечной деформации (Пуассона).
- 3. Напряжения в наклонных сечениях при центральном растяжении стержня. Закон парности касательных напряжений.
- 4. Условие прочности при центральном растяжении и сжатии. Основные типы задач при расчетах на прочность растянутых (сжатых) стержней.
- 5. Диаграммы напряжений при растяжении и сжатии пластичных материалов. Механические характеристики материалов.
- 6. Диаграммы напряжений при растяжении и сжатии хрупких материалов.
- 7. Явления последействия. Ползучесть. Релаксация напряжений.
- 8. Нормативное и расчетное сопротивление. Нормативная и расчетная нагрузки.
- 9. Определение напряжений в произвольном сечении при плоском напряженном состоянии.
- 10. Определение главных напряжений и положения главных сечений при плоском напряженном состоянии. Экстремальные касательные напряжения.
- 11. Зависимость между напряжениями и деформациями при плоском и объемном напряженном состояниях (обобщенный закон Гука).
- 12. Назначение гипотез прочности. Классические гипотезы прочности для

- хрупких и пластичных материалов. Приведенное напряжение. Универсальная запись условия прочности.
- 13. Чистый сдвиг. Закон Гука при сдвиге. Условие прочности.
- 14. Кручение. Понятие о крутящем моменте. Определение напряжений при кручении вала круглого сечения. Условие прочности.
- 15. Расчет прочности при кручении бруса круглого сечения из пластичного материала.
- 16. Определение деформации при кручении валов.
- 17. Кручение стержней с некруглым поперечным сечением. Свободное кручение стержней прямоугольного поперечного сечения.
- 18. Свободное кручение тонкостенных стержней открытого профиля.
- 19. Свободное кручение тонкостенных стержней замкнутого профиля.
- 20. Общее понятие об изгибе. Поперечная сила и изгибающий момент. Правило знаков. Зависимости между изгибающим моментом, поперечной силой и интенсивностью распределенной нагрузки.
- 21. Контроль правильности построения эпюр поперечной силы и изгибающего момента. Примеры.
- 22. Вычисление нормальных напряжений при изгибе.
- 23. Подбор поперечного сечения балки из пластичного и хрупкого материала.
- 24. Вычисление касательных напряжений при поперечном изгибе (формула Журавского).
- 25. Напряжения в наклонных сечениях балки. Главные напряжения. Приведенное напряжение.
- 26. Дифференциальное уравнение оси изогнутой балки. Геометрический смысл постоянных интегрирования.
- 27. Метод уравнивания постоянных интегрирования при определении перемещений балки.
- 28. Косой изгиб.
- 29. Внецентренное растяжение и сжатие. Определение напряжений. Проверка прочности.
- 30. Ядро сечения.
- 31. Сложное сопротивлении бруса. Брус прямоугольного сечения.
- 32. Сложное сопротивлении бруса. Брус круглого сечения.
- 33. Расчет гибких стоек на устойчивость. Формула Эйлера и условие ее применения.
- 34. Расчет гибких стоек на устойчивость при напряжениях, превышающих предел пропорциональности (формула Ясинского).
- 35. Расчет гибких стоек на устойчивость с использованием коэффициента продольного изгиба.
- 36. Продольно-поперечный изгиб.
- 37. Расчет тонкостенных сосудов по безмоментной теории. Основные допущения и основные уравнения.
- 38. Динамическое действие нагрузки. Динамический коэффициент.
- 39. Ударное действие нагрузки. Расчетная модель и основные допущения.

Выражение для динамического коэффициента.

- 40. Концентрация напряжений.
- 41. Усталость материалов. Предел выносливости.
- 42. Потенциальная энергия деформации. Формула Мора для расчета деформаций

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводиться по билетам (тест), каждый из которых состоит из 2 вопросов и 1 задачи.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент не решил задачу и не ответил на вопросы.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент решил задачу и ответил на один вопрос.
- 3. Оценка «Хорошо» ставится в случае, если студент решил задачу и не полностью ответил на два вопроса.
- 4. Оценка «Отлично» ставится, если студент решил задачу и полностью ответил на 2 вопроса.

7.2.7 Паспорт оценочных материалов

	7.2.7 наспорт оценочных материа	1110D	
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемо й компетенции	Наименование оценочного средства
1	Основные понятия. Уравнение равновесия отсеченной части прямого бруса. Центральное растяжение и сжатие стержней.	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
2	Геометрические характеристики поперечных сечений стержней	УК-1, ОПК-1	Тест, защита решенной задачи по индивидуальному заданию
3	Механические свойства и характеристики основных групп строительных материалов при растяжении и сжатии.	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
4	Теория прочности материалов.	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
5	Расчет простых балок. Понятие о поперечной силе и изгибающем моменте. Построение эпюр поперечных сил, изгибающих моментов в балках при плоском изгибе		Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
6	Напряжение в сечениях балки. Подбор размеров поперечного сечения. Расчет прочности.	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному

			заданию
7	Деформации балок.	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
8	Чистый сдвиг. Свободное кручение прямых стержней.	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
9	Внецентренное растяжение (сжатие). Косой изгиб.	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
10	Устойчивость сжатых стержней. Продольно-поперечный изгиб	УК-1, ОПК-1	Тест, защита лабораторных работ, защита решенной задачи по индивидуальному заданию
11	Концентрация напряжений. Усталость материалов.	УК-1, ОПК-1	Тест, защита решенной задачи по индивидуальному заданию
12	Расчет движущихся с ускорением элементов конструкций. Удар.	УК-1, ОПК-1	Тест, защита решенной задачи по индивидуальному заданию

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

1. Куликов, Ю. А.

Сопротивление материалов. Курс лекций [Электронный ресурс] / Куликов Ю. А. - Санкт-Петербург : Лань, 2021. - 272 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-2449-8.

URL: https://e.lanbook.com/book/167372

2. Жилин, Роман Анатольевич. Техническая механика [Текст] : учебное пособие / ФГБОУ ВО "Воронеж. гос. техн. ун-т". - Воронеж : Воронежский государственный технический университет, 2018. - 170 с. : ил. - Библиогр.: с. 167-168 (19 назв.). - ISBN 978-5-7731-0597-8 : 58-79.

3. Завистовский, В. Э.

Техническая механика: учебное пособие / В. Э. Завистовский, Л. С. Турищев. - Минск: РИПО, 2019. - 368 с.: ил., табл., схем., граф. - Библиогр.: с. 354-355. - ISBN 978-985-503-895-6.

URL: https://biblioclub.ru/index.php?page=book&id=600078

4. Молотников, В. Я.

Техническая механика [Электронный ресурс] : учебное пособие для вузов / Молотников В. Я. - 2-е изд., стер. - Санкт-Петербург : Лань, 2021. - 476 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-7256-7.

URL: https://e.lanbook.com/book/156926

5. Кузьмин, Л. Ю.

Сопротивление материалов [Электронный ресурс] / Кузьмин Л. Ю., Сергиенко В. Н., Ломунов В. К. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2021. - 228 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-2056-8.

URL: https://e.lanbook.com/book/168995

6. Степин, П. А.

Сопротивление материалов [Электронный ресурс] / Степин П. А. - 13-е изд., стер. - Санкт-Петербург : Лань, 2021. - 320 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-1038-5.

URL: https://e.lanbook.com/book/168383

Дополнительная литература:

1. Коргин, А. В.

Сопротивление материалов [Электронный ресурс]: Учебно-методическое пособие к выполнению практических работ для обучающихся по направлению подготовки 23.05.01 Наземные транспортнотехнологические средства, профиль «Подъемно-транспортные, строительные, дорожные средства и оборудование» / А. В. Коргин, В. А. Ермаков, В. А. Романец. - Москва: МИСИ-МГСУ, Ай Пи Эр Медиа, ЭБС АСВ, 2018. - 186 с. - ISBN 978-5-7264-1842-1.

URL: http://www.iprbookshop.ru/76897.html

2. Сопротивление материалов [Электронный ресурс] : пособие по решению задач / Миролюбов И. Н., Алмаметов Ф. З., Курицин Н. А., Изотов И. Н. - 9-е изд., испр. - Санкт-Петербург : Лань, 2021. - 512 с. - Книга из коллекции Лань - Инженерно-технические науки. - ISBN 978-5-8114-0555-8.

URL: https://e.lanbook.com/book/168607

3. Немкова, Г. Н.

Техническая механика: курсовое проектирование: учебное пособие / Г.Н. Немкова, С.А. Мазилкин. - Минск: РИПО, 2018. - 200 с.: табл., ил., схем. - Библиогр.: с. 80-81. - ISBN 978-985-503-816-1.

URL: http://biblioclub.ru/index.php?page=book&id=497489

4. Агаханов, М.К.

Сопротивление материалов [Электронный ресурс] : учебное пособие / В.Г. Богопольский; М.К. Агаханов. - Москва : Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2017. - 178 с. - ISBN 978-5-7264-1463-8.

URL: http://www.iprbookshop.ru/63782.html

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

Лицензионное программное обеспечение:

- 1. LibreOffice.
- 2. Microsoft Office Outlook 2013/2007.

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. http://www.edu.ru/.
- 2. Образовательный портал ВГТУ.

Информационные справочные системы:

- 3. http://window.edu.ru
- 4. https://wiki.cchgeu.ru/

<u>http://cchgeu.ru</u> ВГТУ. Учебно-методические разработки кафедры <u>строительной механики.</u>

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

№ п/п	Вид аудиторного фонда	Требования
1	Лекционная аудитория	Аудитория должна быть оборудована как обычной доской, так и техническими средствами для реализации мультимедийной технологии проведения лекции (проектор, экран, или интерактивная доска, Note-book.

2	Компьютерные классы.	Оснащение специализированной учебной мебелью.
		Оснащение техническими средствами обучения: ПК
		с возможностью подключения к локальным сетям и
		Интернету. Наличие ВТ из расчёта один ПК на
		одного студента.
3	Аудитория для	Аудитория должна быть оборудована как обычной
	практических занятий.	доской, так и техническими средствами для
	_	реализации мультимедийной технологии проведения
		практических занятий (проектор, экран, или
		интерактивная доска, Note-book, или другой ПК).

Перечень материально-технического обеспечения дисциплины:

Вид и наименование	Вил ээцдтий	Краткая
оборудования	Вид запитии	характеристика
IBMPC-совместимые	Практические заня-	Процессор серии не ниже Intel
персональные	тия.	Core i3. Оперативная память не
компьютеры.		менее 4 Гбайт ПК должны быть
		объединены локальной сетью с
		выходом в Интернет.
Мультимедийные сред-	Лекционные занятия.	Мультимедиа-проектор,
ства.		компьютер, оснащенный
		программой PowerPoint и экран
		для демонстрации электронных
		презентаций.
Учебно-наглядные	Лекционные и прак-	Плакаты, наглядные пособия,
пособия.	тические занятия	иллюстрационный материал.
	оборудования IBMPC-совместимые персональные компьютеры. Мультимедийные сред- ства.	оборудования IBMPC-совместимые персональные компьютеры. Мультимедийные средства. Лекционные занятия. Учебно-наглядные Лекционные и прак-

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Сопротивление материалов» читаются лекции, проводятся практические занятия и лабораторные работы.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета строительных конструкций. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично,
	последовательно фиксировать основные положения, выводы,
	формулировки, обобщения; помечать важные мысли, выделять
	ключевые слова, термины. Проверка терминов, понятий с
	помощью энциклопедий, словарей, справочников с

Практическое занятие	выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии. Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по
Лабораторная работа	алгоритму. Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад; - подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед экзаменом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.