МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета

Баркалов С.А.

«29» июня 2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Теоретическая механика»

Направление подготовки 27.03.03 СИСТЕМНЫЙ АНАЛИЗ И УПРАВЛЕ-НИЕ

Профиль Системный анализ и управление

Квалификация выпускника бакалавр

Нормативный период обучения 4 года/4 года 11 м.

Форма обучения очная/заочная

Год начала подготовки 2018

Автор программы

Волков В.В.

Заведующий кафедрой Теоретической и прикладной механики

Козлов В.А.

Руководитель ОПОП

Лихачева Т.Г.

Воронеж 2018

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Теоретическая одной механика является ИЗ фундаментальных общенаучных дисциплин физико-математического цикла. Изучение теоретической механики должно также дать тот минимум фундаментальных знаний в области механического взаимодействия, равновесия и движения материальных тел, на базе которых строится большинство специальных дисциплин инженерно-технического образования. Кроме того, изучение теоретической механики способствует расширению научного кругозора и повышению общей культуры будущего специалиста, развитию его мышления и становлению его мировоззрения.

1.2. Задачи освоения дисциплины

- Дать студенту первоначальные представления о постановке инженерных и технических задач, их формализации, выборе модели изучаемого механического явления.
- Привить навыки использования математического аппарата для решения инженерных задач в области механики.
- Освоить методы статического расчета конструкций и их элементов.
- Освоить основы кинематического и динамического исследования элементов строительных конструкций, строительных машин и механизмов.
- Развитие логического мышления и творческого подхода к решению профессиональных задач.

В итоге изучения курса теоретической механики студент должен знать основные понятия, законы механики и вытекающие из этих законов методы изучения равновесия и движения материальной точки, твердого тела и механической системы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Теоретическая механика» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Теоретическая механика» направлен на формирование следующих компетенций:

ОПК-3 - способностью представлять современную научную картину мира на основе знаний основных положений, законов и методов естественных наук и математики. ИД-3/ОПК-3 Обоснование характеристик объекта строительства, оценка преимуществ и недостатков выбранного конструктивного решения

Компетенция Результаты обучения, характеризующие сформированность компетенции		
ОПК-3	знать основные подходы к формализации и	
	моделированию движения и равновесия	
	материальных тел, постановку и методы решения	

задач о движении и равновесии механических систем
уметь решать соответствующие конкретные задачи
механики при равновесии и движении твердых тел и
механических систем
владеть навыками составления и решения уравнений
равновесия и движения твердых тел и механических
систем

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Теоретическая механика» составляет 5 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Province property	Всего	Семестры
Виды учебной работы		3
Аудиторные занятия (всего)	54	54
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	36	36
Самостоятельная работа	90	90
Часы на контроль	36	36
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

заочная форма обучения

заочная форма обучения		
Duran varabuaŭ naborra	Всего	Семестры
Виды учебной работы		3
Аудиторные занятия (всего)	16	16
В том числе:		
Лекции	6	6
Практические занятия (ПЗ)	10	10
Самостоятельная работа	155	155
Часы на контроль	9	9
Виды промежуточной аттестации - экзамен	+	+
Общая трудоемкость:		
академические часы	180	180
зач.ед.	5	5

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего, час
1	Основные понятия, определения и теоремы статики	Предмет механики. Статика, кинематика, динамика — разделы механики. Предмет статики. Основные понятия статики. Аксиомы статики. Виды связей, их реакции. Проекция силы на ось. Геометрический и аналитический способы сложения сил. Сходящиеся силы, их равнодействующая. Геометрическое условие равновесия системы сходящихся сил, аналитические условия равновесия. Произвольная плоская система сил. Алгебраическое значение момента силы и пары сил. Распределенная нагрузка. Аналитические условия равновесия параллельной и произвольной плоской системы сил. Статически определимые и статически неопределимые системы. Понятие о ферме. Леммы о нулевых стержнях. Определение усилий в стержнях плоской фермы способом вырезания узлов и способом сечений (Риттера). Равновесие при наличии сил трения. Трение скольжения при покое (сцепление) и при движении. Коэффициент трения. Центр тяжести твердого тела; центр тяжести объема, площади, линии. Способы определения положений центров тяжести тел	6	10	20	36
2	Введение в кинематику. Кинематика точки	положении центров тяжести тел Предмет кинематики. Задачи кинематики. Способы задания движения точки. Скорость и ускорение точки. Вычисление кинематических характеристик точки при различных способах задания ее движения. Частные случаи движения точки	2	2	10	14
3	Кинематика твердого тела и плоских механизмов	Поступательное движение твердого тела, его свойства. Вращение твердого тела вокруг неподвижной оси. Угловая скорость и угловое ускорение тела. Скорость и ускорение точки твердого тела, вращающегося вокруг неподвижной оси. Передаточные механизмы. Плоскопараллельное (плоское) движение твердого тела. Уравнения движения плоской фигуры. Теорема о сложении скоростей при плоском движении, следствие. Мгновенный центр скоростей, частные случаи определения его положения. Теорема о сложении ускорений при плоском движении тела	4	6	18	28
4	Введение в динамику. Динамика точки	Законы динамики. Дифференциальные уравнения движения точки в декартовых координатах и в проекциях на оси естественного трехгран-ника. Две основные задачи динамики для материальной точки, их решения. Элементарная работа силы и ее работа на конечном перемещении точки. Работа силы тяжести, упругости, трения. Мощность. Теорема об изменении кинетической энергии точки	2	6	14	22
5	Механическая система. Динамика твердого тела	Механическая система. Классификация сил, свойства внутренних сил. Масса системы. Центр масс; радиус-вектор и координаты центра масс. Дифференциальные уравнения движения механической системы. Момент инерции системы и твердого тела	2	6	14	22

		Итого	18	36	90	144
	СИСТСИВІ	Кинетическая энергия механической системы. Кинетическая энергия твердого тела при поступательном движении, при вращении вокруг неподвижной оси и при плоскопараллельном движении. Теорема об изменении кинетической энергии механической системы	2	6	14	22
6		Работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси, сопротивление при качении.				
		относительно оси. Радиус инерции. Теорема о моментах инерции тела относительно параллельных осей. Осевые моменты инерции однородного тонкого стержня, тонкого круглого кольца, диска. Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси. Дифференциальные уравнения плоскопараллельного движения твердого тела				

заочная форма обучения

		заочная форма ооучения				
№ п/п	Наименование темы	Содержание раздела	Лекц	Прак зан.	CPC	Всего час
1	Основные понятия, определения и теоремы статики	Предмет механики. Статика, кинематика, динамика — разделы механики. Предмет статики. Основные понятия статики. Аксиомы статики. Виды связей, их реакции. Проекция силы на ось. Геометрический и аналитический способы сложения сил. Сходящиеся силы, их равнодействующая. Геометрическое условие равновесия системы сходящихся сил, аналитические условия равновесия	2	-	26	28
2	Введение в кинематику	Предмет кинематики. Задачи кинематики. Способы задания движения точки. Скорость и ускорение точки	2	2	26	30
3	Введение в динамику.	Законы динамики. Дифференциальные уравнения движения точки в декартовых координатах и в проекциях на оси естественного трехгран-ника. Две основные задачи динамики для материальной точки, их решения	2	2	26	30
4	Система сил, расположенных в одной плоскости	Алгебраическое значение момента силы и пары сил. Статически определимые и статически неопределимые системы. Центр тяжести твердого тела; центр тяжести объема, площади, линии	-	2	26	28
5	Кинематика точки	Вычисление кинематических характеристик точки при различных способах задания ее движения. Частные случаи движения точки	-	2	26	28
6	Динамика точки	Элементарная работа силы и ее работа на конечном перемещении точки. Работа силы тяжести, упругости, трения. Мощность. Теорема об изменении кинетической энергии точки	-	2	25	27
		Итого	6	10	155	171

5.2 Перечень лабораторных работ

Не предусмотрено учебным планом

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ОПК-3	знать основные подходы к формализации и моделированию движения и равновесия материальных тел, постановку и методы решения задач о движении и равновесии механических систем	Практически полное посещение лекционных, практических и лабораторных занятий; выполнение самостоятельных работ на «отл.».	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	уметь решать соответствующие конкретные задачи механики при равновесии и движении твердых тел и механических систем	Посещено более 75% лекционных, практических и лабораторных занятий; выполнение самостоятельных работ на «хор.».	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	владеть навыками составления и решения уравнений равновесия и	Посещено не менее половины лекционных, практических и лабораторных занятий; выполнение самостоятельных работ «удовл.»	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний оцениваются в 3 семестре для очной формы обучения, 3 семестре для заочной формы обучения по четырехбалльной системе:

«отлично»;

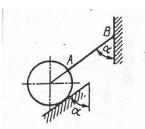
«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-3	знать основные	Тест	Выполнение	Выполнение	Выполнение	В тесте
	подходы к		теста на 90-	теста на 80-	теста на 70-80%	менее 70%

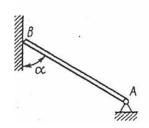
	формализации и		100%	90%		правильных
	моделированию					ответов
	движения и					
	равновесия					
	материальных					
,	тел, постановку и					
	методы решения					
!	задач о движении					
	и равновесии					
	механических					
	систем					
	уметь решать	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
1	соответствующие	стандартных	решены в	ирован	ирован верный	решены
	конкретные	практических	полном	верный ход	ход решения в	
	задачи механики	задач	объеме и	решения	большинстве	
	при равновесии и		получены	всех, но не	задач	
,	движении		верные	получен		
,	твердых тел и		ответы	верный ответ		
	механических			во всех		
	систем			задачах		
	владеть навыками	Решение	Задачи	Продемонстр	Продемонстр	Задачи не
1	составления и	прикладных	решены в	ирован	ирован верный	решены
	решения	задач в	полном	верный ход	ход решения в	
	уравнений	конкретной	объеме и	решения	большинстве	
	равновесия и	предметной	получены	всех, но не	задач	
[,	движения	области	верные	получен		
[твердых тел и		ответы	верный ответ		
	механических			во всех		
	систем			задачах		


7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

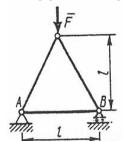
- 1. Аксиомы статики.
- 2. Связи и их реакции. Принцип освобождаемости от связей.
- 3. Проекция силы на ось. Сложение сил.
- 4. Равновесие системы сходящихся сил.
- 5. Плоская система сил. Алгебраические моменты силы и пары. Распределённая нагрузка.
- 6. Уравнения равновесия плоской системы сил (3 формы).
- 7. Трение скольжения. Трение нити о цилиндрическую поверхность (формула Эйлера).
- 8. Плоские фермы. Леммы о нулевых стержнях. Расчёт плоских ферм (метод вырезания узлов и метод сечений).
- 9. Центр тяжести твёрдого тела. Координаты центра тяжести плоской фигуры. Центр тяжести треугольника, сектора круга.
- 10. Методы нахождения центра тяжести твёрдых тел. Статический момент площади плоской фигуры

7.2.2 Примерный перечень заданий для решения стандартных задач


1. Равновесие системы сходящихся сил

1.2.15

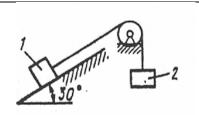
Однородный шар весом 12 Н удерживается в равновесии на гладкой наклонной плоскости с помощью веревки AB. Определить давление шара на плоскость, если угол $a=60^{\circ}$.


2. Равновесие произвольной плоской системы сил

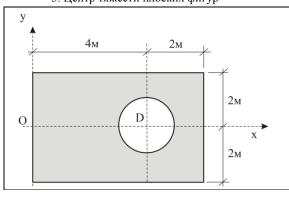
2.4.15

Конец B однородного бруса весом 100 кH, закрепленного в шарнире A, опирается на гладкую стену. Определить в кH давление бруса на стену, если угол $\alpha = 60^{\circ}$.

3. Расчет плоских ферм (метод вырезания узлов)

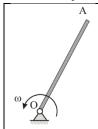


4.2.10


Определить усилие в стержне AB. Сила F = 400 H.

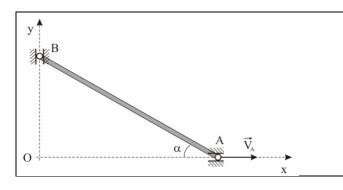
4. Трение скольжения

Каким должен быть наибольший вес груза 2, для того, чтобы груз I весом 100 Н оставался в покое на наклонной плоскости, если коэффициент трения скольжения f=0,3.


5. Центр тяжести плоских фигур

Радиус круглого выреза равен r=1 м.

Координата x_c центра тяжести однородной пластины равна...


6. Вращательное движение твердого тела

Дано: OA = 1 м. Угловая скорость кривошипа изменяется по закону

$$\omega = 2\sin\frac{\pi t}{3}$$
 (рад/с) . Определить касательное ускорение точки A в момент времени $t_1 = 1\,\mathrm{c}$.

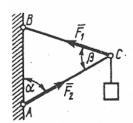
7. Плоское движение твердого тела

Ползун A в данный момент времени имеет скорость $V_A=4$ м/с; $\alpha=60^o$. Определить скорость ползуна B .

8. Первая задача динамики (криволинейное движение)

Материальная точка движется по криволинейной траектории под действием силы $\mathbf{F} = 15\mathbf{\tau} + 0.3t\mathbf{n}$. Определить массу точки, если в момент времени t = 20 с её ускорение a = 0.6 м/с².

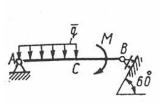
9. Вторая задача динамики (прямолинейное движение)


Материальная точка массой m = 900 кг движется по горизонтальной прямой под действием силы F = 270t H, которая направлена по той же прямой. Определить скорость точки в момент времени t = 10 с, если при $t_0 = 0$ скорость $v_0 = 10$ м/с

10. Теорема об изменении кинетической энергии точки

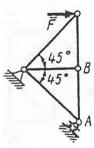
Тело толкнули вверх по гладкой наклонной плоскости, образующей угол $\alpha = 30^{\circ}$ с горизонтом, с начальной скоростью $v_0 = 4\sqrt{g}$ м/с. Определить расстояние, пройденное телом до остановки.

7.2.3 Примерный перечень заданий для решения прикладных задач


1. Равновесие системы сходящихся сил

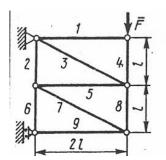
1.2.5

Шарнирный трехзвенник ABC удерживает в равновесии груз, подвешенный к шарнирному болту C. Под действием груза стержень AC сжат силой $F_2=25$ Н. Заданы углы $\alpha=60^\circ$ и $\beta=45^\circ$. Считая стержни AC и BC невесомыми, определить усилие в стержне BC.


2. Равновесие произвольной плоской системы сил

2.4.4

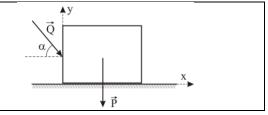
Определить момент M пары сил, при котором реакция опоры B равна 250 H, если интенсивность распределенной нагрузки q=150 H/м, размеры AC=CB=2 м.


3. Расчет плоских ферм (метод вырезания узлов)

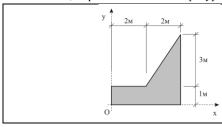
4.2.19

Определить усилие в стержне AB. Сила F = 400 H.

4. Расчет плоских ферм (метод сквозных сечений)


4.3.10

Определить усилие в стержне 8. Сила $F=260~\mathrm{H}$.


5. Трение скольжения

Дано: $P = 10 \, \text{кH}; \quad Q = 2 \, \text{кH}; \quad \alpha = 30^{\circ};$ коэффициент трения f = 0.2.

Будет ли тело находиться в равновесии? Сила трения равна...

6. Центр тяжести плоских фигур

Координата y_c центра тяжести однородной пластины равна...

7. Координатный способ задания движения точки

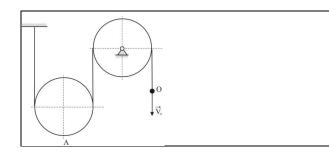
Задан закон движения точки в координатной форме: $x = 2\sqrt{3}\sin\frac{\pi t}{6}$ (м); $y = \frac{2\pi}{3}t$ (м).

Определить модуль скорости точки в момент времени $t_1 = 1$ с.

8. Естественный способ задания движения точки

Точка движется по окружности радиуса R м, дуговая координата изменяется по закону s(t) м. Определить касательное ускорение точки в момент времени $t_1 = 1$ с. R = 6 м; $s = 4t^3$ (м).

9. Вращательное движение твердого тела

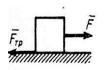

Дано: OA = 1 м. Угловая скорость кривошипа изменяется по закону

$$\omega = 2\sin\frac{\pi t}{3}$$
 (рад/с) . Определить касательное ускорение точки A в момент времени $t_1 = 1\,\mathrm{c}$.

Твердое тело вращается вокруг неподвижной оси по закону $\varphi = 5t^2 - 3t$.

Определить угловую скорость тела в момент времени $t_1 = 1$ с.

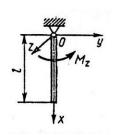
10. Плоское движение твердого тела


Подвижный блок радиуса $R=2\,\mathrm{m}$ катится по тросу без скольжения.

Скорость конца троса $V_o = 4$ м/с. Определить скорость точки A.

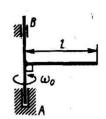
11. Первая задача динамики (криволинейное движение)

Материальная точка массой m=14 кг движется по окружности радиуса r=7 м с постоянным касательным ускорением $a_{\tau}=0,5$ м/с². Определить модуль равнодействующих сил, действующих на точку, в момент времени t=4 с, если при $t_0=0$ скорость $v_0=0$.


13. Теорема об изменении кинетической энергии точки

Тело массой m=100 кг начинает движение из состояния покоя по горизонтальной шероховатой плоскости под действием постоянной силы F. Пройдя путь, равный 5 м, скорость точки становится равной 5 м/с. Определить модуль силы F, если модуль силы трения равен 20 H.

Тело толкнули вверх по гладкой наклонной плоскости, образующей угол $\alpha = 30^{\circ}$ с горизонтом, с начальной скоростью $\nu_0 = 4\sqrt{g}$ м/с. Определить расстояние, пройденное телом до остановки.


14. Дифференциальное уравнение вращения твердого тела

Однородный стержень, масса которого m=8 кг и длина l=1,5 м, вращается вокруг оси Oz под действием пары сил с моментом $M_z=12\cdot\sin(3\pi t/4)$ Н·м. Определить угловое ускорение стержня в момент времени t=2/3 с.

остановки маховика.

15. Теорема об изменении кинетической энергии системы (тела)

К валу AB жестко прикреплен горизонтальный однородный стержень длиной l=2 м и массой m=12 кг. Валу сообщена угловая скорость $\omega_0=2$ рад/с. Предоставленный самому себе, он остановился, сделав 20 оборотов. Определить момент трения в подшипниках, считая его постоянным.

7.2.4 Примерный перечень вопросов для подготовки к зачету

Не предусмотрено учебным планом

7.2.5 Примерный перечень заданий для решения прикладных задач

- 11. Аксиомы статики.
- 12. Связи и их реакции. Принцип освобождаемости от связей.
- 13. Проекция силы на ось. Сложение сил.
- 14. Равновесие системы сходящихся сил.
- 15. Плоская система сил. Алгебраические моменты силы и пары. Распределённая нагрузка.
- 16. Уравнения равновесия плоской системы сил (3 формы).
- 17. Трение скольжения. Трение нити о цилиндрическую поверхность (формула Эйлера).

- 18. Плоские фермы. Леммы о нулевых стержнях. Расчёт плоских ферм (метод вырезания узлов и метод сечений).
- 19. Центр тяжести твёрдого тела. Координаты центра тяжести плоской фигуры. Центр тяжести треугольника, сектора круга.
- 20. Методы нахождения центра тяжести твёрдых тел. Статический момент площади плоской фигуры.
- 21. Способы задания движения точки. Скорость и ускорение точки при векторном и координатном способах задания её движения.
- 22. Скорость и ускорение точки при естественном способе задания её движения.
- 23. Частные случаи движения точки.
- 24. Поступательное движение твёрдого тела, его свойства.
- 25. Вращательное движение твёрдого тела вокруг неподвижной оси. Частные случаи вращения твёрдого тела.
- 26. Скорости и ускорения точек вращающегося твёрдого тела. Передаточные механизмы.
- 27. Плоскопараллельное движение твёрдого тела.
- 28. Теорема о сложении скоростей при плоском движении твёрдого тела. Следствие (теорема о проекции скоростей двух точек твёрдого тела).
- 29. Мгновенный центр скоростей, его существование и единственность. Частные случаи определения мцс.
- 30. Теорема о сложении ускорений при плоском движении твёрдого тела.
- 31. Законы динамики. Системы единиц.
- 32. Дифференциальные уравнения движения свободной материальной точки.
- 33. Две задачи динамики.
- 34. Работа силы. Мощность.
- 35. Работа силы тяжести, трения, упругости.
- 36. Кинетическая энергия точки. Теорема об изменении кинетической энергии точки.
- 37. Система материальных точек (определение, классификация сил, масса, центр масс). Дифференциальные уравнения движения механической системы.
- 38. Моменты инерции твёрдого тела. Примеры.
- 39. Теорема о моменте инерции твёрдого тела относительно параллельных осей.
- 40. Дифференциальное уравнение вращения твёрдого тела вокруг неподвижной оси.
- 41. Работа вращающего момента. Сопротивление при вращении.
- 42. Кинетическая энергия механической системы. Кинетическая энергия тела при поступательном, вращательном и плоскопараллельном движениях тела. Теорема об изменении кинетической энергии системы.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Экзамен проводится по тест-билетам, каждый из которых содержит 2 вопроса и 10 задач. Каждый правильный ответ на вопрос в тесте оценивается 5 баллов, задача оценивается в 1 балл (1 балл верное решение и 5 баллов за верный ответ). Максимальное количество набранных баллов – 20.

- 1. Оценка «Неудовлетворительно» ставится в случае, если студент набрал менее 8 баллов.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент набрал от 8 до 11 баллов
- 3. Оценка «Хорошо» ставится в случае, если студент набрал от 12 до 16 баллов.
 - 4. Оценка «Отлично» ставится, если студент набрал от 17 до 20 баллов.)

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Основные понятия, определения и теоремы статики	ОПК-3	Тест
2	Введение в кинематику. Кинематика точки	ОПК-3	Тест
3	Кинематика твердого тела и плоских механизмов	ОПК-3	Тест
4	Введение в динамику. Динамика точки	ОПК-3	Тест
5	Механическая система. Динамика твердого тела	ОПК-3	Тест
6	Теорема об изменении кинетической энергии системы	ОПК-3	Тест

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

1	Яблонский А.А. Курс теоретической механики. Статика. Кинематика. Динамика: учебник / А.А. Яблонский, В.М. Никифорова. – 16-е изд., стер. – М.: Кнорус, 2011. – 603 с.
2	Мещерский И.В. Задачи по теоретической механике: учеб. пособие для вузов: рек. УМО / И.В. Мещерский; под ред. В.В. Пальмова, Д.Д. Меркина. – 50-е изд., стер. – СПб.: издательство «Лань», 2010. – 448 с.
3	Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для втузов: доп. МО СССР / под общ. ред. А.А. Яблонского. — 18-е изд., стер. — М.: Кнорус, 2011. — 386 с.

4 Сборник коротких задач по теоретической механике: учеб. пособие для вузов: рек. УМО / под ред. О.Э. Кепе. – 3-е изд., стер. – СПб.: издательство «Лань», 2009. – 368 с.

Дополнительная литература

№ п/п	Автор, название, место издания, год издания учебной литературы, вид и характеристика инь информационных ресурсов
1	Тарг С.М. Краткий курс теоретической механики: учеб.: рек. МО РФ / С.М. Тарг. – изд., стер. – М.: Высш. шк., 2007. – 415 с.
2	Бабанов В.В. Теоретическая механика для архитекторов: учебник в 2 т.: доп. МО РФ. / В.В. Бабанов. – М.: Академия, 2008. – 247 с.
3	Бабанов В.В. Теоретическая механика для архитекторов: учебник в 2 т.: доп. МО РФ. / В.В. Бабанов. – М.: Академия, 2008. – 269 с.
4	Бать М.И. и др. Теоретическая механика в примерах и задачах. Том 1. Статика и кинематика: учеб. пособие / М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. – 11-е изд., с – СПб.: издательство «Лань», 2010. – 667 с.
5	Бать М.И. и др. Теоретическая механика в примерах и задачах. Том 2. Динамика: уче пособие. / М.И. Бать, Г.Ю. Джанелидзе, А.С. Кельзон. – 9-е изд., стер. – СПб.: издательство «Лань», 2010. – 638 с.

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

№ п/п	Автор, название, место издания, год издания учебной литературы, вид и характеристика и информационных ресурсов		
1	Козинцева С.В. Теоретическая механика [Электронный ресурс]: учеб. пособие / С.В. Козинцева, М.Н. Сусин. – Электрон. текстовые данные. – Саратов: Ай Пи Эр Медиа, 2 – 152 с. – Режим доступа: http://www.iprbookshop.ru/728 . – ЭБС «IPRbooks».		
2	Щербакова Ю.В. Теоретическая механика [Электронный ресурс]: учеб. пособие / Ю. Щербакова. – Электрон. текстовые данные. – Саратов: Научная книга, 2012. – 159 с Режим доступа: http://www.iprbookshop.ru/6345 . – ЭБС «IPRbooks».		
3	Статика. Кинематика. Динамика: экспресс-курс лекций по основным разделам теоретической механики (для студ. инженерно-строит. спец.) [Электронный ресурс] / Козлов. – Электрон. текстовые данные. – Воронеж: Воронежский ГАСУ, 2011. – библ Воронежского ГАСУ.		

Для работы в сети рекомендуется использовать сайты (базы данных, информационно-справочные и поисковые системы):

- 1) http://elibrary.ru
- 2) http://www.knigafund.ru
- 3) http://www.fepo.ru
- 4) http://encycl.yandex.ru (энциклопедии и словари).

Для работы с электронными учебниками требуется наличие таких программных средств, как Adobe Reader для Windows и DjVuBrowserPlugin.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ

ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Для проведения ряда лекционных занятий по дисциплине необходимы аудитории, оснащенные презентационным оборудованием (компьютер с ОС Windows и программой PowerPoint или Adobe Reader, мультимедийный проектор и экран).

Для обеспечения практических занятий требуется компьютерный класс с комплектом лицензионного программного обеспечения (при использовании электронных изданий – компьютерный класс с выходом в Интернет).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Теоретическая механика» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета механических систем. Занятия проводятся путем решения конкретных залач в аудитории.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое	Конспектирование рекомендуемых источников. Работа с
занятие	конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения; - участие в работе студенческих научных конференций, олимпиад;

	- подготовка к промежуточной аттестации.
Подготовка к	Готовиться к промежуточной аттестации следует систематически,
промежуточной	в течение всего семестра. Интенсивная подготовка должна
аттестации	начаться не позднее, чем за месяц-полтора до промежуточной
	аттестации. Данные перед экзаменом, экзаменом три дня
	эффективнее всего использовать для повторения и
	систематизации материала.