МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Воронежский государственный технический университет»

УТВЕРЖДАЮ

Декан факультета Сом А.И. Колосов

«30» августа 2017г.

РАБОЧАЯПРОГРАММА

дисциплины

«Электроника и электротехника»

Направление подготовки 20.03.01 ТЕХНОСФЕРНАЯ БЕЗОПАСНОСТЬ

Профиль Безопасность жизнедеятельности в техносфере

Квалификация выпускника бакалавр

Нормативный период обучения 4года

Форма обучения очная

Год начала подготовки 2017

Автор программы

/ Тонн Д. А. /

Заведующий кафедрой электропривода, автоматики

и управления в технических

системах

/ Бурковский В.Л. /

Руководитель ОПОП

/П.С. Куприенко/

Воронеж 2017

1.ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

- получение знаний по основам электротехники и электроники, необходимых для организации эффективного и безопасного применения, эксплуатации электротехнических и электронных устройств,
- получение знаний по основным типам электронных приборов и устройств; параметрам современных полупроводниковых устройств: усилителей, генераторов, вторичных источников питания, цифровых преобразователей, микропроцессорных управляющих систем.

1.2. Задачи освоения дисциплины

- изучить теоретический материал по построению и расчету электрических цепей, а также по устройству и принципам работы типового электротехнического оборудования;
- получить практические навыки по исследованию и расчету характеристик электротехнических устройств, построению и расчету электрических цепей;
- изучение основных типов электронных приборов: диодов, транзисторов, тиристоров;
 - освоение физических основ полупроводниковой электроники
- изучение современных полупроводниковых устройств: усилителей, генераторов, вторичных источников питания, цифровых преобразователей;
- ознакомление со структурой и принципом работы микропроцессорных управляющих систем;
- приобретение навыков исследования типовых электронных устройств с помощью измерительных приборов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Электроника и электротехника» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Электроника и электротехника» направлен на формирование следующих компетенций:

ОК-8-способностью работать самостоятельно,

ОК-9-способностью принимать решения в пределах своих полномочий,

ОК-10-способностью к познавательной деятельности.

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОК-8	Знать:
	- основные законы электротехники для электриче-
	ских цепей;
	- основные типы, конструкцию, принципы работы
	электрических машин и трансформаторов, области их
	применения, механические и рабочие характеристики;

	Уметь:					
	- разрабатывать принципиальные электрические					
	схемы,					
	Владеть:					
	- навыками работы с электротехнической аппарату-					
	рой					
ОК-9	Знать:					
	- методы измерения электрических величин;					
	- основные типы и области применения электронных					
	приборов и устройств;					
	Уметь:					
	- рассчитывать и эксплуатировать типовые электри-					
	ческие устройства;					
	Владеть:					
	- методами анализа и обработки результатов изме-					
	рения;					
ОК-10	Знать:					
	- параметры современных полупроводниковых уст-					
	ройств: усилителей, генераторов, вторичных источников					
	питания, цифровых преобразователей, микропроцессорных					
	и измерительных комплексов.					
	Уметь:					
	- рассчитывать типовые электронные устройства.					
	Владеть:					
	- навыками работы с электронными устройствами;					
	- навыками исследования электронных устройств с					
	помощью измерительных приборов.					

4. ОБЪЕМ ДИСЦИПЛИНЫ

Общая трудоемкость дисциплины «Электроника и электротехника» составляет 3 з.е.

Распределение трудоемкости дисциплины по видам занятий

Очная форма обучения

Dura varabuaŭ pabara	Всего	Семестры
Виды учебной работы	часов	4
Аудиторные занятия (всего)	36	36
В том числе:		
Лекции	18	18
Практические занятия (ПЗ)	18	18
Самостоятельная работа	72	72
Виды промежуточной аттестации - зачет	+	+
Общая трудоемкость:		
академические часы	108	108
зач.ед.	3	3

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

Очная форма обучения

No	Наименование	Содержание раздела	Лекц	Прак.	Лаб.	CPC	Всего,
п/п	темы	осдержите раздела	, , , , , , , , , , , , , , , , , , ,	зан.	зан.	01.0	20010,
11, 11	10.1121				Jul 1.		час
1	Линейные электрические цепи посто-янного тока	Основные понятия электрических цепей. Понятие электрической цепи. Ток, напряжение, ЭДС, мощность в цепи. Основные элементы электрической цепи. Источники и приемники электрической энергии. Эквивалентные преобразования в электрических цепях. Основные законы электротехники для электрических цепей. Закон Ома для участка цепи, содержащего и не содержащего источник ЭДС. Первый и второй законы Кирхгофа. Метод расчета цепи на основе законов Кирхгофа. Баланс мощностей в электрической цепи. Методы контурных токов, узловых потенциалов, двух узлов, наложения и эквивалентного	2	2	-	12	16
2	Анализ периодических процессов в линейных цепях	Синусоидальные величины и линейные элементы в цепи синусоидального тока. Основные параметры синусоидального сигнала: амплитуда, частота, фаза. Средние и действующие значения периодических ЭДС, напряжений и токов. Линейные элементы R, L, С в цепи синусоидального тока. Треугольники сопротивлений и мощностей. Активная, реактивная и полная мощность.					
		Расчет цепей синусоидального тока, построение векторных диаграмм. Электрическая цепь с последовательным соединением элементов R, L, C. Комплексное сопротивление. Векторные диаграммы. Треугольник напряжений. Резонанс напряжений в последовательной электрической цепи. Трехфазные электрические цепи. Трехфазная симметричная система ЭДС. Получение трехфазной системы ЭДС. Схемы соединения трехфазных цепей. Линейные и фазные напряжения и токи трехфазной цепи при соединении фаз в звезду. Линейные и фазные напряжения и токи при соединении	6	6	-	12	24

		фаз треугольником.					
3	Электриче-	Электрические машины и					
	ские машины	трансформаторы. Трансформатор:					
	и трансфор-	устройство и принцип действия.					
	маторы, сред-	Соотношения для токов и напря-					
	ства измере-	жений обмоток и числа витков.					
	ния	Электрические машины постоян-					
		ного и переменного тока. Син-					
		хронные и асинхронные двигатели.					
		Синхронные и асинхронные гене-	4	4		10	20
		раторы.	4	4	-	12	20
		Электрические измерения и					
		приборы. Методы измерений					
		электрических и магнитных вели-					
		чин. Погрешности измерений.					
		Принцип действия магнитоэлек-					
		трических, электромагнитных,					
		электродинамических и электро-					
		статических приборов. Измерение					
		токов, напряжений и мощностей.					
4	Полупровод-	Полупроводниковые диоды.					
	никовые эле-	Собственная и примесная элек-					
	менты и ос-	тропроводность полупроводников.					
	новы микро-	Полупроводниковые диоды, их					
	электроники	назначение и характеристики: вы-					
	1	прямительные диоды, стабили-					
		троны, фото и светодиоды, тири-					
		сторы. Варикапы, оптроны: назна-	2	2	-	12	16
		чение и принцип работы.					
		Биполярные и полевые тран-					
		зисторы. Структура и принцип					
		действия биполярного и полевого					
		транзисторов. Схемы включения					
		биполярного транзистора.					
		Характеристики биполярного и					
		полевого транзисторов.					
5	Аналоговая	Источники вторичного элек-					
	схемотехника	тропитания. Структура источника					
		питания электронных устройств.					
		Однофазный однополупериодный					
		выпрямитель. Однофазный мосто-					
		вой выпрямитель. Трехфазный					
		мостовой выпрямитель.					
		Усилители. Классификация и					
		характеристики усилителей посто-					
		янного и переменного тока. Кас-					
		кадное построение усилителей.					
		Обратная связь в усилителях. Од-					
		нокаскадный усилитель.	2	2		12	16
		Операционные усилители.	4			12	10
		Подходы к построению усили-					
		тельных устройств. Общие свой-					
		ства устройств с операционными					
		усилителями. Основные виды вы-					
		числительных схем на основе опе-					
		рационных усилителей. Схемо-					
		техника и основные параметры					
		операционных усилителей.					
		Генераторы. Режимы возбуж-					
		дения генератора. Условия само-					
		возбуждения. LC -генераторы.					
		<i>RC</i> -генераторы. Генератор с мос-					
		том Вина на операционном усили-					

		теле. Генератор пилообразного напряжения.					
6	Цифровая схемотехника	Комбинационные цифровые устройства. Основные логические операции. Виды логических элементов. Таблицы истинности элементов И, ИЛИ, НЕ. Двоичная система исчисления. Комбинационные цифровые устройства: шифраторы и дешифраторы, мультиплексоры и демультиплексоры, их условное обозначение и таблицы истинности. Последовательностные цифровые устройства. Триггеры, их классификация по способу записи и функциональному назначению. Обозначения триггера, его входов и выходов. Триггер RS-типа. Триггер D-типа. Т-триггер. JK-триггер. Двоичный и двоично-десятичный счетчики.	2	2	-	12	16
		Итого	18	18	-	72	108

5.2 Перечень лабораторных работ

Не предусмотрены учебным планом

5.3 Перечень практических работ

очная форма обучения

- 1. Расчет линейной цепи постоянного тока с одним источником ЭДС.
- 2. Расчет линейной цепи постоянного тока с несколькими источниками ЭДС.
 - 3. Расчет параметров линейных цепей синусоидального тока.
- 4. Расчет цепей синусоидального тока с последовательным и параллельным соединением элементов R, L, C.
 - 5. Расчет трехфазной электрической цепи.
 - 6. Электромагнитный расчет трансформатора.
 - 7. Определение показаний средств измерения.
 - 8. Расчет схем с диодами.
 - 9. Расчет схем с биполярными транзисторами.
 - 10. Расчет однофазного мостового выпрямителя.
 - 11. Расчет транзисторного усилителя напряжения.
 - 12. Синтез комбинационных цифровых устройств.
 - 13. Синтез последовательностных цифровых устройств.

6 ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкалоценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются последующей системе:

«аттестован»;

«неаттестован».

Компе- тенция	Результатыобуче- ния,характеризующие сформированностьком- петенции	Критерии оценивания	Аттестован	Неаттестован
OK-8	Знать: - основные законы электротехники для электрических цепей; - основные типы, конструкцию, принципы работы электрических машин и трансформаторов, области их применения, механические и рабочие характеристики;	Активная работа на практических занятиях, отвечает на теоретические вопросы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
		Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: - навыками работы с	Решение прикладных задач в конкретной предметной области, выполнение плана самостоятельной работы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
OK-9	Знать: - методы измерения электрических величин; - основные типы и области применения электронных приборов и устройств;	Активная работа на практических занятиях, отвечает на теоретические вопросы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
		Решение стандартных практических задач	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	- методами анализа и обработки результатов измерения;	Решение прикладных задач в конкретной предметной области, выполнение плана самостоятельной работы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

OK-10	Знать: - параметры современных полупроводниковых устройств: усилителей, генераторов, вторичных источников питания, цифровых преобразователей, микропроцессорных и измерительных комплексов.	Активная работа на практических занятиях, отвечает на теоретические вопросы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
		Решение стандартных практических задач	Выполнение работ в срок, предусмот- ренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах
	Владеть: - навыками работы с электронными устройствами; - навыками исследо-	Решение прикладных задач в конкретной предметной области, выполнение плана самостоятельной работы	Выполнение работ в срок, предусмотренный в рабочих программах	Невыполнение работ в срок, предусмотренный в рабочих программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 4 семестре для очной формы обучения, 5 семестре для заочной формы обучения по двухбалльной системе:

«зачтено»

«незачтено»

	Результатыобуче-			
Компе- тенция	ния,характеризующи е сформированность- компетенции	Критерии оценивания	Зачтено	Незачтено
OK-8	Знать: - основные законы электротехники для электрических цепей; - основные типы, конструкцию, принципы работы электрических машин и трансформаторов, области их применения, механические и рабочие характеристики;	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	принципиальные электрические схемы, Владеть:	Решение стандартных практических задач Решение прикладных задач в конкретной предметной области	Продемонстрирова н верный ход решения в большинстве задач Продемонстрирова н верный ход решения в большинстве задач	Задачи не решены Задачи не решены
	технической аппаратурой	mermon condern	в сольшинетье зада 1	

ОК-9	Знать:	Тест	Выполнение теста на	Выполнение менее 70%
OK-7	- методы измере-	rect	70-100%	Выполнение менее 7070
	_		70-10070	
	ния электриче-			
	ских величин;			
	- основные типы и			
	области приме-			
	нения электрон-			
	ных приборов и			
	устройств;			
	Уметь:	Решение стандартных	Продемонстрирова н	Задачи не решены
	- рассчитывать и	практических задач	верный ход решения	
	эксплуатировать		в большинстве задач	
	типовые элек-			
	трические уст-			
	ройства;			
	Владеть:	Решение прикладных за-	Продемонстрирова н	Задачи не решены
	- методами ана-	дач в конкретной пред-	верный ход решения	-
	лиза и обработки		в большинстве задач	
	результатов из-		, ,	
	мерения;			
ОК-10	Знать:	Тест	Выполнение теста на	Выполнение менее 70%
	- параметры со-		70-100%	
	временных полу-		, 0 100,0	
	проводниковых			
	устройств: уси-			
	лителей, генера-			
	торов, вторичных			
	тания, цифровых			
	преобразовате-			
	лей, микропро-			
	цессорных и из-			
	мерительных			
	комплексов.	_		_
	Уметь:	Решение стандартных	Продемонстрирова н	Задачи не решены
	- рассчитывать	практических задач	верный ход решения	
	типовые элек-		в большинстве задач	
	тронные устрой-			
	ства.			
	Владеть:	Решение прикладных за-	Продемонстрирова н	Задачи не решены
		дач в конкретной пред-	верный ход решения	
	боты с элек-	метной области	в большинстве задач	
	тронными уст-			
	ройствами;			
	- навыками ис-			
	следования элек-			
	тронных уст-			
	ройств с помо-			
	щью измери-			
	тельных прибо-			
	ров.			
	IL C. D.		<u> </u>	

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
- 7.2.1 Примерный перечень заданий для подготовки к тестированию 1. Количество уравнений, записанных по первому закону Кирхгофа, на одно меньше количества_

- а) контуров;
- б) ветвей;
- в) узлов;
- г) ЭДС.
- 2. Количество уравнений в методе контурных токов равно количеству контуров.
 - а) зависимых;
 - б) независимых;
 - в) свободных;
 - г) наружных.
- 3. Эквивалентное сопротивление участка определяется выражением.....:

$$R_2$$
 a) $R_{3KB}=R_1+R_2+R_3;$ $6)$ $R_{3KB}=(R_1+R_2+R_3)/(R_1R_2R_3);$ $R_{3KB}=R_1+(R_2R_3)/(R_2+R_3);$ $R_{3KB}=R_2+(R_1R_3)/(R_1+R_3);$ $R_{3KB}=R_2+(R_1R_3)/(R_1+R_2).$

<u>4 Действующее значение синусоидального тока определяется выражением</u>

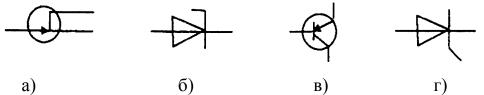
a)
$$I = \sqrt{2} \cdot I_m$$
; 6) $I = \sqrt{3} \cdot I_m$;

в)
$$I = \frac{I_m}{2}$$
; Γ) $I = \frac{I_m}{\sqrt{2}}$; Π) $I = \frac{I_m}{\sqrt{3}}$.

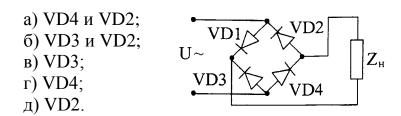
5. Для тока $i = I_m sin(\omega t + \psi)$ комплекс действующего значения имеет вид:

a)
$$\dot{I} = I_m \cdot e^{j \cdot \omega \cdot t}$$
, \dot{G} $\dot{I} = \frac{I_m}{\sqrt{2}} \cdot e^{j \cdot \psi}$, b) $\dot{I} = I_m \cdot e^{j \cdot \psi}$, Γ $\dot{I} = \frac{I_m}{\sqrt{2}} \cdot e^{j \cdot \omega \cdot t}$.

- 6. Вращающаяся часть электродвигателя называются
- а) статор;
- б) ротор;
- в) коммутатор.

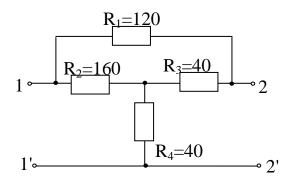

7. В цепи питания нагревательного прибора, включенного на напряжение 220 В, сила тока равна 5 А. Определить мощность прибора.

- a) 25 BT,
- б) 1,1 кВт,
- в) 120 Вт,
- г) 44 Вт.

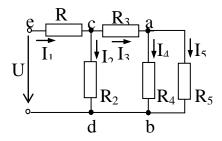

8. Какое из приведенных определений полупроводника наиболее точно?

- а) полупроводник это вещество, на внешней атомной оболочке которого находится 4 электрона;
- б) полупроводник это вещество, основным свойством которого является сильная зависимость удельного сопротивления от воздействия внешних факторов температуры, электрического и магнитного полей, светового и ионизирующего излучений;
- в) полупроводник это вещество, температурный коэффициент удельного сопротивления которого отрицателен.

9. Полевой транзистор имеет обозначение:

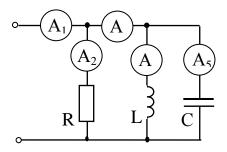


10. Укажите, какой из диодов мостовой схемы выпрямителя включен неправильно, если VD1 включен верно:

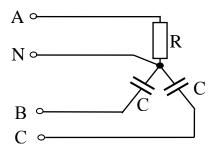


7.2.2 Примерный перечень заданий для решения стандартных задач

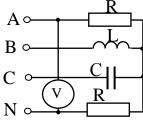
1. Определить входное сопротивление относительно зажимов 1-1' цепи (рис. 1.10) при холостом ходе (зажимы 2-2' разомкнуты) и при коротком замыкании (зажимы 2-2' замкнуты). Значения сопротивлений указаны на схеме.

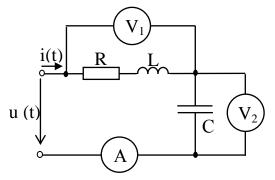


2. В электрической цепи, схема которой приведена на рисунке, известен ток четвертой ветви I_4 =0,2 А. Определить приложенное напряжение и мощность, расходуемую в цепи, если сопротивления резисторов: R_1 = 50 Ом; R_2 = 80 Ом; R_3 = 20 Ом; R_4 = 30 Ом; R_5 = 60 Ом.



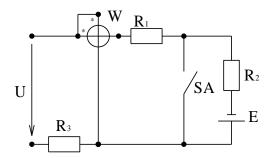
- **3.** Элементы R, L, C соединены последовательно. Известны действующие значения напряжений этих элементов. Построить качественно векторную диаграмму напряжений и тока, определить действующее значение неизвестной величины и угол сдвига фаз ф между входным напряжением и током для следующих случаев:
 - 1) U_R =50 B, U_L =150 B, U_C =100 B, U=?;
 - 2) U_R =?; U_L =100 B, U_C =50 B, U=100 B;
 - 3) U_R =60 B, U_L =?, U_C =160 B, U=100B;
 - 4) U_R =40 B, U_L =30 B, U_C =?, U=50 B;
 - 5) $U_R=60 \text{ B}$, $U_L=220 \text{ B}$, $U_C=140 \text{ B}$, U=?.


4. Определить показания амперметров A_2 и A_3 в схеме рисунке, если известны показания амперметров A_1 , A_4 , A_5 : I_{A1} =5,64 A, I_{A4} =4 A, I_{A5} =3 A.

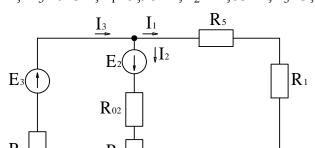

5. В цепи известны фазные токи: I_A =3 A; I_B =4 A; I_C =4 A. Определить показание амперметра в нейтральном проводе.

- **6.** Линейное напряжение трехфазного трансформатора, соединенного звездой с нулевым проводом, равно 220 В. В фазе А включено 30 одинаковых ламп (40 Вт), 127 В каждая), в фазе В 20 ламп, а фаза С 10 ламп. Определить ток в нейтрали и напряжение на каждой группе ламп при обрыве нулевого провода.
- 7. Определить токи в цепи, если источник питания симметричен и $R=\omega L=1/\omega C=2$ Ом; $U_v=20$ В.

8. Определить показания приборов электромагнитной системы в цепи, схема которой показана на рисунке, записать выражение мгновенного значения тока, если: R=50 Ом, $\omega L=10$ Ом, $\frac{1}{\omega C}=90$ Ом. На вход цепи подано синусоидальное напряжение $u(t)=310\sin(\omega t+30^\circ)$ В.

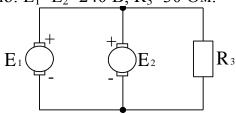

9. Трехфазный трансформатор имеет: номинальную мощность $S_{\text{ном}} = 1600 \text{ кВ A}$, номинальное первичное $U_{1\text{ном}} = 10 \text{ кВ и}$ вторичное $U_{2\text{ном}} = 0.4 \text{ кВ напряжения, максимальное значение магнитной индукции в стержне <math>B_{\text{max}} = 1.55 \text{ Тл}$, ЭДС одного витка $E_{\text{вит}} = 5 \text{ В}$. Частота переменного тока сети f = 50 Гц, соединение обмоток транс-форматора Y/Y, коэффициент заполнения стержня ста-

лью $k_{\rm cr}=0.97$. Определить: число витков в обмотках; максимальное значение основного магнитного потока; площадь поперечного сечения стержня; номинальный ток во вторичной цепи; коэффициент трансформации.


10. Трехфазный трансформатор имеет: номинальное напряжение $U_{1\text{ном}}$ =127 B, ток холостого хода $I_{0\text{ном}}$ = 20,5 A , коэффициент мощности холостого хода соз $\phi_{0\text{ном}}$ =0,08. Соединение обмоток трансформатора Y/Y. Частота переменного тока сети f = 50 Γ ц. Определить параметры намагничивающего контура.

7.2.3 Примерный перечень заданий для решения прикладных задач

- **1.** Определите показание вольтметра в цепи. Дано: E_1 =220 B; E_2 =60 B; E_3 =90 B; R_{01} =0,4 Ом; R_{02} =0,2 Ом; R_{03} =0,1 Ом; R_1 =40 Ом; R_2 =16 Ом; R_3 =45 Ом; R_4 =15 Ом; R_5 =20 Ом; R_V $\rightarrow \infty$.
- **2.** Определите показание ваттметра при разомкнутом и замкнутом выключателе SA. Дано: U=50 B; E=30 B; R_1 = R_3 =10 Om; R_2 =20 Om.


3. Запишите уравнение энергетического баланса для цепи. Определите мощности, отдаваемые источником E_3 и потребляемые приемниками E_2 и R_5 . Дано: E_1 =100 B; E_2 =24 B; E_3 =12 B; R_{01} =0,6 Ом; R_{02} =0,2 Ом; R_1 =4,4 Ом; R_2 =3,8 Ом; R_3 =2 Ом; R_4 =12 Ом; R_5 =6 Ом; I_1 =5,95 A; I_2 =-2,63 A; I_3 =3,32 A.

4. Задана полняя номиняльняя мошность трехфазного трансформатора Shom = 100 kBA, hor кого замыкания $P_{\rm K}$ Соединение обмото Гц. Определить коэ U максимальный КПД X_4

) хода $P_0 = 0.465$ кВт и коротности нагрузки $\cos \phi 2 = 0.8$. переменного тока сети f = 50при номинальной нагрузке и

те машины с ЭДС E₁ и E₂ ? 5. В каких р Определите токи в цепи. Дано: $E_1 = E_2 = 240 \text{ B}$; $R_3 = 30 \text{ Om}$.

- 6. Три приемника электрической энергии подключены к сети с напряжением U, причем первый присоединен последовательно со вторым и третьим, которые между собой соединены параллельно. Дано: $Q_1=0.25$ кBAp; $\cos \varphi_1=0.625$; $\phi_1 > 0$; S₂=2,6 кВА; $\phi_2 = -60^\circ$; P₃=1,2 кВт; U₂=200 В (напряжение на параллельных приемниках). Изобразите схему замещения цепи. Определите напряжение сети и токи приемников. Постройте векторную диаграмму.
- 7. Как изменится яркость свечения лампы EL1 после подключения выключателем SA такой же ламы EL2? Какая из ламп после этого будет светиться ярче? Дано: $R_1 = X_2 = R_3 = X_4 = 200 \text{ Ом}$; U = 100 B.

- 8. В трехфазную электрическую сеть с линейным напряжением 380 В включен трехфазный приемник. Дано: мощность фаз приемника: S_a=5,2 кВА; $Q_B=4,5$ кВАр; $P_c=2,6$ кВт; $\phi_a=\phi_B=\phi_c=-60^\circ$. Изобразите схему замещения цепи. Определите все мощности трехфазного приемника, фазные токи и сопротивления фаз. Постройте векторную диаграмму.
- 9. Трехфазный приемник потребляет из сети реактивную мощность Q=4,647 кВАр. Полные сопротивления фаз $Z_a = Z_B = Z_C = 25$ Ом при $\varphi_a = \varphi_B = \varphi_C = 25$ -53,1°. Изобразите схему замещения цепи. Определите комплексы фазных и ли-

нейных напряжений. Постройте векторную диаграмму.

10. На рисунке приведена принципиальная схема трехфазной цепи с несимметричной нагрузкой (при включении однофазных приемников). Дано: U=380 B; аргументы приемников ϕ_a = 0°; ϕ_b = 60°; ϕ_c = 30°; показания амперметров I_{A1} =25 A; I_{A2} =10 A; I_{A3} =20 A. Определите показание I_{A4} , активные и реактивные сопротивления фаз. Постройте векторную диаграмму.

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Понятие электрической цепи. Ток, напряжение, ЭДС, мощность в цепи. Основные элементы электрической цепи.
 - 2. Источники и приемники электрической энергии. Баланс мощностей.
 - 3. Законы Ома и Кирхгофа.
- 4. Составление уравнений для расчета цепи постоянного тока на основе законов Кирхгофа (на примере).
- 5. Составление уравнений для расчета цепи постоянного тока методом контурных токов (на примере).
 - 6. Эквивалентные преображования в энектрических цепях.
- 7. Основны А1 метр А2 усои А3 го ст А4 амплитуда, частота, фаза. Среднее и ден ощее за ния.
 - 8. Линейные элеме Ia ____, C ____ син Ic _____ ьного тока.
- - 10. Векторные гра туза к го и по щность. 11. Резонанс напряж
- 12. Трехфазная систем ЭДС. Получение трехфазной системы ЭДС.
- 13. Схемы соединения трехфазных цепей. Линейные и фазные напряжения и токи.

- 14. Трансформатор: устройство и принцип действия. Соотношения для токов и напряжений обмоток и числа витков.
- 15. Электрические машины постоянного и переменного тока. Синхронные и асинхронные двигатели и генераторы.
- 16. Методы измерений электрических и магнитных величин. Погрешности измерений.
- 17. Принцип действия магнитоэлектрических, электромагнитных, электродинамических и электростатических приборов.
 - 18. Измерение токов, напряжений и мощностей.
 - 19. Собственная и примесная электропроводность полупроводников.
 - 20. Выпрямительные диоды.
 - 21. Стабилитроны.
 - 22. Фотодиоды и светодиоды.
 - 23. Тиристоры.
 - 24. Структура и принцип действия биполярного транзистора.
 - 25. Схемы включения биполярного транзистора.
 - 26. Характеристики биполярного транзистора.
 - 27. Полевые транзисторы: принцип действия, характеристики.
 - 28. Структура источника питания электронных устройств.
 - 29. Однофазный однополупериодный выпрямитель.
 - 30. Однофазный мостовой выпрямитель.
 - 31. Усилители постоянного и переменного тока.
 - 32. Обратная связь в усилителях.
 - 33. Однокаскадный усилитель напряжения.
 - 34. Подходы к построению усилительных устройств.
 - 35. Общие свойства устройств с операционными усилителями.
 - 36. Основные виды линейных схем на основе операционных усилителей.
 - 37. Режимы возбуждения генератора. Условия самовозбуждения.
 - 38. *LC* генераторы.
 - 39. *RC*-генераторы.
- 40. Основные логические операции. Виды логических элементов. Таблицы истинности элементов И, ИЛИ, НЕ.
 - 41. Шифраторы и дешифраторы.
 - 42. Мультиплексоры и демультиплексоры.
- 43. Триггеры, их классификация по способу записи и функциональному назначению.
 - 44. Триггер *RS*-типа.
 - **45**. Триггер *D*-типа.
 - **46**. *Т*-триггер.
 - 47. *JК*-триггер.
 - 48. Двоичный и двоично-десятичный счетчики.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

Экзамен по дисциплине не предусмотрен учебным планом.

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация проводится в форме Зачета по тест-билетам, каждый из которых содержит 5 вопросов, 5 стандартных задач и 5 прикладных задач. Каждый правильный ответ на вопрос в тесте оценивается 1 баллом. Максимальное количество набранных баллов — 15.

- 1. Оценка «Зачтено» ставится в случае, если студент набрал не менее 10 баллов.
 - 2. Оценка «Незачтено» ставится, если студент набрал менее 9 баллов.

7.2.7 Паспорт оценочных материалов

№ п/п	Контролируемые	Код контро-	Наименование оценочного
	разделы (темы)	лируемой	средства
	дисциплины	компетенции	
		(или ее части)	
1	Линейные электриче- ские цепи постоянного тока	OK-8, OK-9, OK-10	Тест, зачет, устный опрос, решение стандартных и при- кладных задач
2	Анализ периодических процессов в линейных цепях	OK-8, OK-9, OK-10	Тест, зачет, устный опрос, решение стандартных и при- кладных задач
3	Электрические машины и трансформаторы, средства измерения		Тест, зачет, устный опрос, решение стандартных и при- кладных задач
4	Полупроводниковые элементы и основы	ОК-8, ОК-9, ОК-10	Тест, зачет, устный опрос,

	микроэлектроники		решение стандартных и при- кладных задач
		ОК-8, ОК-9, ОК-10	Тест, зачет, устный опрос, решение стандартных и при- кладных задач
6	Цифровая схемотехника	ОК-8, ОК-9, ОК-10	Тест, зачет, устный опрос, решение стандартных и при- кладных задач

7.3 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

Тестирование осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных тест-заданий на бумажном носителе. Время тестирования 30 мин. Затем осуществляется проверка теста экзаменатором и выставляется оценка согласно методики выставления оценки при проведении промежуточной аттестации.

Решение стандартных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

Решение прикладных задач осуществляется, либо при помощи компьютерной системы тестирования, либо с использованием выданных задач на бумажном носителе. Время решения задач 30 мин. Затем осуществляется проверка решения задач экзаменатором и выставляется оценка, согласно методики выставления оценки при проведении промежуточной аттестации.

8 УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

- 1. Кузовкин, В. А.Электротехника и электроника: учебник для бакалавров / В. А. Кузовкин, В. В. Филатов М.: Юрайт, 2013. 431 с.
- 2. Миловзоров, О. В. Электроника: учебник / О. В. Миловзоров, И. Г. Панков 3-е изд., стереотип. : Высш. шк., 2006. 288 с.
- 3. Попова, Т. В. Анализ линейных электрических цепей, электротехнических машин и аппаратов: лабораторный практикум: учеб. пособие / Т. В. Попова, Д. А. Тонн. Воронеж: ФГБОУ ВО «Воронежский государственный технический университет», 2016. 206 с.
- 4. Попова, Т. В. Расчет линейных электрических цепей, параметров и основных характеристик электротехнических машин и трансформаторов: практикум: учеб. пособие /Т.В. Попова, Д.А. Тонн. Воронеж: ФГБОУ ВО «Воро-

- нежский государственный технический университет», 2016. 99 с.
- 5. Миловзоров, О.В. Электроника: Учебник для бакалавров / О. В. Миловзоров, И. Г. Панков 5-е изд., перераб. и доп. М.: Юрайт, 2013. 407 с. (Бакалавр. Базовый курс).
- 6. Новожилов, О. П. Электротехника и электроника: Учебник / О. П. Новожилов М.: Гардарики, 2008. 653 с.
- 7. Иванов, И. И. Электротехника: Учеб. пособие / И. И. Иванов, Г. И. Соловьев Г.И.- 6-е изд., стереотип. СПб.; М.; Краснодар: Лань, 2009. 496 с.
- 8. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи: Учеб. для вузов / Л.А. Бессонов. 10-е изд. М. : Гардарики, 2002. 638 с.: ил.
- 9. Белов, Н.В. Электротехника и основы электроники [Электронный ресурс]: учебное пособие / Н.В. Белов, Ю.С. Волков. Электрон. дан. Санкт-Петербург: Лань, 2012. 432 с. Режим доступа: https://e.lanbook.com/book/3553.
- 10. Ермуратский, П. В. Электротехника и электроника [Электронный ресурс] : учебник / П. В. Ермуратский, Г. П. Лычкина, Ю. Б. Минкин. Электрон. дан. Москва: ДМК Пресс, 2011. 417 с. Режим доступа: https://e.lanbook.com/book/908.
- 11. Кравчук, Д.А. Электротехника и электроника [Электронный ресурс] : учебное пособие / Д.А. Кравчук, С.С. Снесарев. Электрон. дан. Ростов-на-Дону: ЮФУ, 2016. 100 с. Режим доступа: https://e.lanbook.com/book/114421.
- 12. Гордеев-Бургвиц М.А. Общая электротехника и электроника [Электронный ресурс]: учебное пособие/ Гордеев-Бургвиц М.А.— Электрон. текстовые данные.— М.: Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2015.— 331 с.— Режим доступа: http://www.iprbookshop.ru/35441.html.— ЭБС «IPRbooks»
- 8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень лицензионного программного обеспечения, ресурсовинформационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем
 - Microsoft Office Word 2013/2007
 - Microsoft Office Excel 2013/2007
 - Microsoft Office Power Point 2013/2007https://cyberleninka.ru/,
 - https://studopedia.org/,
 - https://students-library.com/.
 - Электронно-библиотечная система «IPRbooks» (Лицензионный договор от 27.04.2020 № 6685/20 на предоставление доступа к электронно-библиотечной системе IPRbooks (неисключительная лицензия) с ООО Компания «Ай Пи Ар Медиа» (Доступ к ЭБС IPRbooks. Тематические коллекции и адаптированные технологии для лиц с ОВЗ). Лицензионный договор от 28.08.2020 № 6941/20 на предоставление доступа к электронно-библиотечной системе IPRbooks (неисключительная лицензия) (Доступ к ЭБС

- IPRbooks))
- Электронно-библиотечная система «Лань» (Договор от 16.03.2020 № 124 с ООО «ЭБС ЛАНЬ»)
- Электронно-библиотечная система «Университетская библиотека онлайн» (Договор от 06.03.2020 № 32-02/20 об оказании информационных услуг с ООО «НексМедиа»).

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Специализированная лекционная аудитория, оснащенная оборудованием для лекционных демонстраций и проекционной аппаратурой (видеопроектор Epson). Специализированные лаборатории, оснащенные лабораторными стендами

10.МЕТОДИЧЕСКИЕУКАЗАНИЯДЛЯОБУЧАЮЩИХСЯПООСВОЕ НИЮДИСЦИПЛИНЫ(МОДУЛЯ)

По дисциплине «Электротехника и электроника» читаются лекции, проводятся практические занятия.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета электрических цепей, электрических машин и аппаратов, устройств электроники. Занятия проводятся путем решения конкретных задач в аудитории.

Большое значение по закреплению и совершенствованию знаний имеет самостоятельная работа студентов. Информацию обо всех видах самостоятельной работы студенты получают на занятиях.

Вид учебных занятий	Деятельность студента		
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.		
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетно-графических заданий, решение задач по алгоритму.		

Самостоятельная	Самостоятельная работа студентов способствует глубокому усвоения				
работа	учебного материала и развитию навыков самообразования. Самостоя-				
	тельная работа предполагает следующие составляющие:				
	- работа с текстами: учебниками, справочниками, дополнительной ли-				
	тературой, а также проработка конспектов лекций;				
	- выполнение домашних заданий и расчетов;				
	- работа над темами для самостоятельного изучения;				
	- участие в работе студенческих научных конференций, олимпиад;				
	- подготовка к промежуточной аттестации.				
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в те-				
промежуточной	чение всего семестра. Интенсивная подготовка должна начаться не				
аттестации	позднее, чем за месяц-полтора до промежуточной аттестации. Данные				
	перед зачетом три дня эффективнее всего использовать для повторения и				
	систематизации материала.				

Лист регистрации изменений

			Подпись
№ п/п	Перечень вносимых изменений	Дата внесения изменений	заведующего кафедрой, ответственной за реализацию ОПОГ
1	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	30.08.2018	0
2	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	31.08.2019	0
3	Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем	31.08.2020	0