МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ В А. Небольсин Факультет «ЗС» абил 2017 лектроники

РАБОЧАЯ ПРОГРАММА

дисциплины

«Физика твердого тела»

Направление подготовки 16.03.01 ТЕХНИЧЕСКАЯ ФИЗИКА

Профиль Физическая электроника

Квалификация выпускника бакалавр

Нормативный период обучения 4 года

Форма обучения очная

Год начала подготовки 2017

Автор программы	Ly	/ Коротков Л.Н./
Заведующий кафедрой физики твердого тела	Reces	/ Калинин Ю.Е./
Руководитель ОПОП	Races	/Калинин Ю.Е. /

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

- обеспечение фундаментальных знаний в области физики твёрдого тела.

1.2. Задачи освоения дисциплины

- дать представление о строении и основных физических свойствах твердых тел и теоретических подходах к их описанию;
- научить студентов использовать сведения о физических закономерностях в конденсированных средах в практических целях;
- привить навыки экспериментального исследования электрофизических процессов в твердых телах;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Физика твердого тела» относится к дисциплинам вариативной части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Физика твердого тела» направлен на формирование следующих компетенций:

ДПК-3 - способностью собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии в области выбранного профиля технической физики

ДПК-4 - способностью строить простейшие физические и математические модели приборов, схем, устройств и установок физической электроники различного функционального назначения, а также использовать стандартные программные средства их компьютерного моделирования

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ДПК-3	Знать - основы физики конденсированного
	состояния; физическую сущность процессов,
	протекающих в проводящих,
	полупроводниковых, диэлектрических,
	магнитных материалах и в структурах,
	созданных на их основе.
	уметь- анализировать и обобщать полученные
	данные; выполнять количественные оценки
	величины эффектов и характеристических
	параметров с учётом особенностей
	кристаллической структуры, типа и
	концентрации легирующих примесей;
	самостоятельно осваивать и грамотно
	использовать результатов новых
	экспериментальных и теоретических

	исследований в области физики твёрдого тела;
	самостоятельно собирать, обрабатывать,
	анализировать и систематизировать научно-
	техническую информацию.
	владеть- системным мышлением и восприятием
	информации, связанной с физическими
	процессами в конденсированных средах;
	навыками использования методов
	количественной оценки основных твердотельных
	характеристик; методами теоретических
	исследований для применения в своей
	профессиональной деятельности.
ДПК-4	Знать – основы теории физики твердого тела, и
	экспериментальные методы исследования его
	электрофизических свойств.
	Уметь- целенаправленно и эффективно
	осуществлять литературный поиск по теме
	исследования и корректно ставить условия для
	экспериментального нахождения искомых
	физических величин и зависимостей.
	Владеть- навыками сбора, обработки, анализа и
	обобщения научно-технической информации в
	отраслях знаний, связанных с физикой твердого
	тела.

4. ОБЪЕМ ДИСЦИПЛИНЫ Общая трудоемкость дисциплины «Физика твердого тела» составляет 8 3.e.

Распределение трудоемкости дисциплины по видам занятий очная форма обучения

Виды учебной работы		Семе	естры
Виды учеоной расоты	часов	5	6
Аудиторные занятия (всего)	144	72	72
В том числе:			
Лекции	72	36	36
Практические занятия (ПЗ)	36	18	18
Лабораторные работы (ЛР)	36	18	18
Самостоятельная работа	108	72	36
Курсовая работа	+	+	
Часы на контроль	36	-	36
Виды промежуточной аттестации - экзамен, зачет	+	+	+
Общая трудоемкость:			
академические часы	288	144	144
зач.ед.	8	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

$N_{\underline{0}}$	Содержание раздела	Наименование темы	Лекции	Практич	Лаб.	CPC	Всего
п/п				еские	работы		часов
11/11				занятия			
1	Ввеление в ФТТ	Физика твердого тела - основа	2	_	-	8	10
		твердотельной электроники.					
		Виды классификации твердых					
		тел, Типы химических связей.					
		Элементарная теория					
		электропроводности.					
2	Диэлектрики.	Классификация диэлектриков.	6	4	8	10	28
	Макроскопи-	Электрическая индукция и					
	ческое описание поведения	поляризация. Дипольный момент системы зарядов.					
	диэлектриков	Тензор диэлектрической					
	дизлектриков	проницаемости. Нелинейная					
		диэлектрическая					
		проницаемость. Спонтанная					
		поляризация.					
		Пьезоэлектрический эффект и					
		электрострикция,					
		индуцированный					
		пьезоэффект. Коэффициент электромеханической связи.					
		Связь макро- и					
		микроскопических свойств					
		диэлектриков. Среднее					
		макроскопическое и локальное	,				
		поле, поле Лоренца. Уравнение	,				
2	П	Клаузиуса - Мосотти.	A	1	Α	12	24
3	Поляризация	Поляризуемость диэлектрика.	4	4	4	12	24
	диэлектриков в электрическом	Электронная, ионная и дипольная упругая					
	поле.	поляризация					
		Ионная и дипольная тепловая					
		и миграционная поляризация.					
		Время релаксации. Уравнение					
		Аррениуса.					
4	Диэлектрические	Диэлектрические потери при		4	6	12	26
	потери.	тепловой релаксационной					
		поляризации. Диспер-сионная					
		формула Дебая. Комплексная	l l				

		диэлектрическая проницаемость.					
		Соотношение Кронига -					
		Крамерса. Особенности спектра					
		резонансной диэлектрической					
		дисперсии.					
		Диэлектрические потери,					
		обуслов-ленные					
		электропроводностью. Схемы					
		замещения диэлектрика с					
		потерями. Тангенс угла					
		диэлектрических потерь и					
		мощность потерь.					
5	Пробой твердых	Электрический пробой	2	4	4	10	20
	диэлектриков.	твердых диэ-лектриков. Виды					
	диолектриков.	пробоя. Зависи-мость					
		1					
		пробивного поля от					
		температуры, частоты и					
		толщины образца					
		Электронный пробой.					
		Стримерный механизм пробоя					
		диэлектриков.					
		Электротепловой и					
		электрохимический пробой					
		твердых диэлектриков.					
		-					
6	Электронные	Уравнение Шредингера для	6	4	4	10	24
	состояния в	кристаллов. Адиабатическое					
	идеальном	приближение.					
		Одноэлектронное					
	кристалле.	приближение (метод Хартри-					
		Фока).					
		Волновая функция электрона в					
1		Волновая функция электрона в периодическом поле (функция					
		периодическом поле (функция					
		периодическом поле (функция Блоха).					
		периодическом поле (функция Блоха). Приближение сильно					
		периодическом поле (функция Блоха). Приближение сильно связанных электронов в					
		периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах.					
		периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр					
		периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом					
7	Основы зонной	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле.	8	4	4	10	26
7		периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в	8	4	4	10	26
7	Основы зонной теории твердых тел.	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне.	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные условия Борна-Кармана.	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные условия Борна-Кармана. Заполнение энергетических	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные условия Борна-Кармана. Заполнение энергетических зон электронами	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные условия Борна-Кармана. Заполнение энергетических зон электронами Понятие металла,	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные условия Борна-Кармана. Заполнение энергетических зон электронами Понятие металла, полупроводника и диэлектрика	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные условия Борна-Кармана. Заполнение энергетических зон электронами Понятие металла, полупроводника и диэлектрика с точки зрения зонной теории.	8	4	4	10	26
7	теории твердых	периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах. Энергетический спектр электронов в периодическом потенциальном поле. Число состояний электронов в энергетической зоне. Циклические граничные условия Борна-Кармана. Заполнение энергетических зон электронами Понятие металла, полупроводника и диэлектрика	8	4	4	10	26

			1			l	
		Бриллюэна.					
		Изоэнергетические					
		поверхности. Эффективная					
		масса носителей заряда.					
		Тензор эффективных масс.					
		Различия эффективных масс					
		электронов и дырок.					
		Энергия электронов и дырок в					
		центре и на границах зоны					
		Бриллюэна.					
		Модельные представления о					
		механизмах проводимости в					
		примесных полупроводниках.					
		Водородоподобная модель					
		примесных состояний в					
		1					
		кристаллах полупроводников.					
		Энергетические уровни					
0	C	примесных атомов.	10	4	4	10	20
8	Статистика	Плотность квантовых	10	4	4	10	28
	электронов и	состояний в зонах. Функция					
	дырок в	распределения Ферми-Дирака.					
	полупроводниках	Эффективная плотность					
		состояний.					
		Уровень Ферми. Степень					
		заполнения примесных					
		уровней. Равновесная					
		концентрация электронов и					
		дырок в зонах. Положение					
		уровня Ферми в собственном и					
		невырожденном примесном					
		полупроводнике.					
		Зависимость положения					
		уровня Ферми от температуры					
		для невырожденного					
		полупроводника с частично					
		компенсированной примесью.					
		Примесные зоны. Прыжковый					
		механизм проводимости.					
		Электрическая проводимость					
		1					
		неупорядоченных					
9	I/ axxmar:	полупроводников	12	4		10	26
9	Контактные	Полупроводник во внешнем	12	4	_	10	20
	явления в	электрическом поле.					
	полупроводниках	Приближение слабого поля.					
		Длина экранирования Дебая.					
		Приближение полного					
		обеднения. Пороговый					
		потенциал.					
		Работа выхода. Контактная					
		разность потенциалов. Контакт					
		металл-металл.					
		Контакт металл-					
	l	1	1	<u>i </u>		·	

		полупроводник. Выпрямление тока на контакте металл-полупроводник. Барьерная емкость. Диодная и					
		диффузионная теории выпрямления. Контакт электронного и дырочного полупроводников.					
		Электронно-дырочный переход. Выпрямление на p-n переходе. Теория тонкого p-n перехода. Емкость p-n					
		перехода. Типы гетеропереходов. Основные гетерепереходные пары. Приборы с					
10	Люминесценция	гетерепереходами. Люминесценция. Типы люминесцен-ции. Мономолекулярное свечение. Рекомбинационное излучение при межзонных переходах в полупроводниках. Прямые переходы; непрямые	8	2	-	8	18
		переходы; случай сильно легированного полупроводника; экситонная рекомбинация. Рекомбинационное излучение при переходах между зонными и примесными уровнями в					
		полупроводниках. Переход «зона – уровень примеси»; донорно-акцепторные пары Релаксация люминесценции полупроводников. Температурное тушение люминесценции.					
		Спонтанное и вынужденное излучение атома. Стимулированное излучение твердых тел.					
11	Колебания атомов кристаллической решетки	Одномерные колебания однородной струны. Колебания одноатомной линейной цепочки. Закон дисперсии. Энергия колебаний атомов одномерной решетки. Колебания двухатомной линейной цепочки. Оптические и акустические	10	2	2	8	22

моды колебаний. Законы дисперсии. Колебания атомов трехмерной решетки. Фононы. Статистика фононов. Распределение фононов по энергиям. Статистика Бозе — Энштейна. Теплоемкость кристаллической решетки. Температура Дебая. Физический смысл температуры Дебая. Теплоемкость твердых тел при низких и высоких температурах. Термическое расширение твердых тел. Тепловое сопротивление.	72	26	26	100	252
	72	36	36	108	252

5.2 Перечень лабораторных работ

$N_{\underline{0}}$	Наименование лабораторной работы	Объем часов
Π/Π		
1	Изучение поляризации линейных и нелинейных диэлектриков.	4
	Исследование пьезоэлектрического эффекта.	4
2	Исследование диэлектрической релаксации дебаевского типа в диэлектриках.	4
3	Исследование диэлектрических потерь, обусловленных электропроводностью.	4
	Зачетное занятие 1	2
5	Изучение температурной зависимости электрического сопротивления и определение энергии ионизации (активации)	4
6	Исследование температурной зависимости ЭДС Холла и определение параметров полупроводников по результатам их измерений	4
7	Измерение времени жизни неосновных носителей заряда	4
8	Измерение температурной зависимости термо-ЭДС.	4
	Зачетное занятие 2	2

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины предусматривает выполнение курсовой работы в 5 семестре для очной формы обучения.

Примерная тематика курсовых работ:

- 1. Позисторный эффект в титанате бария
 - Перечень вопросов, подлежащих разработке:
 - 1.1. Особенности позисторного эффекта в сегнетоэлектриках.
 - 1.2. Модели Хейванга и Джонкера.
 - 1.3. Технология получения позисторов.
 - 1.4. Рассчитать температурные зависимости ПТКС по терморезистивным кривым, полученным в эксперименте.
 - 1.5. Оценить величину потенциального барьера на межзеренной границе.
 - 1.6. Применения позисторов.
- 2. Дипольные стекла и долговременные процессы диэлектрической релаксации.
 - 3. Фуллерены, графен и углеродные нанотрубки.
 - 4. Материалы с гигантской электрострикцией.
 - 5. Пьезоэлектрический эффект в кристаллах и текстурах.
 - 6. Спиновые стекла и неэргодичность.
 - 7. Гетеропереходы на основе соединений АЗВ5
- 8. Размерный эффект в сегнетоэлектриках. Наноразмерные сегнетоэлектрики.
 - 9. Электреты.
- 10. Стохастические колебания и хаос в системах с сегнетоэлектрическим конденсатором.
 - 11. Механизмы электрического пробоя полупроводников.
 - 12. Влияние температуры на параметры барьера Шоттки.
 - 13. Сегнетоэлектрики с несоразмерными фазами.
 - 14. Релаксорные сегнетоэлектрики.
 - 15. Сегнетоэластики
 - 16. Сверхпроводимость. Высокотемпературные сверхпроводники.
 - 17. Фотовольтаический эффект в ацентричных кристаллах.
 - 18. Аморфные ферромагнетики.
 - 19. Фотонный кристалл.
 - 20. Магнитоэлектрический эффект в монокристаллах и композитах.

Задачи, решаемые при выполнении курсовой работы:

- •1. Поиск литературных, в том числе зарубежных источников по теме работы.
 - •2. Составление литературного обзора по проблеме исследования.
 - •3. Анализ литературных данных, заключение и выводы.

Курсовая работа включат в себя графическую часть и расчетно-пояснительную записку.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Аттестован	Не аттестован
ДПК-3	Знать - основы физики конденсированного состояния; физическую сущность процессов, протекающих в проводящих, полупроводниковых, диэлектрических, магнитных материалах и в структурах,	Активная работа на практических занятиях, отвечает на теоретические вопросы при защите лабораторных работ	Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренны й в рабочих программах
	материалах и в структурах, созданных на их основе уметь- анализировать и обобщать полученные данные; выполнять количественные оценки величины эффектов и характеристических параметров с учётом особенностей кристаллической структуры, типа и концентрации	Своевременное оформление отчетов по лабораторным работам. Демонстрирует умение систематизировать литературные данные при составление литобзова по теме курсовой работы.	Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренны й в рабочих программах
	легирующих примесей; самостоятельно осваивать и грамотно использовать результатов новых экспериментальных и теоретических исследований в области физики твёрдого тела; самостоятельно собирать, обрабатывать, анализировать и систематизировать научнотехническую информацию.			
	владеть- системным мышлением и восприятием информации, связанной с физическими процессами в конденсированных средах; навыками использования методов количественной оценки основных твердотельных характеристик; методами теоретических исследований для применения в своей профессиональной деятельности	Решение прикладных задач на практических занятиях и в ходе защиты лабораторных работ.	Выполнение работ в срок, предусмотренны й в рабочих программах	Невыполнение работ в срок, предусмотренны й в рабочих программах
ДПК-4	Знать — основы теории физики твердого тела, и экспериментальные методы исследования его электрофизических свойств. Уметь - целенаправленно и эффектирно осуществият.	Активная работа на практических занятиях, отвечает на теоретические вопросы при защите лабораторных работ Своевременное оформление отчетов по	Выполнение работ в срок, предусмотренны й в рабочих программах Выполнение	й в рабочих программах Невыполнение
	эффективно осуществлять литературный поиск по теме исследования и корректно ставить	оформление отчетов по лабораторным работам. Демонстрирует умение	работ в срок, предусмотренны й в рабочих	работ в срок, предусмотренны й в рабочих

условия для экспериментального	систематизировать	программах	программах
нахождения искомых физических	литературные данные при		
величин и зависимостей.	составление литобзова по		
	теме курсовой работы.		
Владеть- навыками сбора,	Решение прикладных	Выполнение	Невыполнение
обработки, анализа и обобщения	задач на практических	работ в срок,	работ в срок,
научно-технической информации	занятиях и в ходе защиты	предусмотренны	предусмотренны
в отраслях знаний, связанных с	лабораторных работ.	й в рабочих	й в рабочих
физикой твердого тела		программах	программах

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 5, 6 семестре для очной формы обучения по двух/четырехбалльной системе:

«зачтено»

«не зачтено»

Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Зачтено	Не зачтено
ДПК-3	Знать - основы физики конденсированного состояния; физическую сущность процессов, протекающих в проводящих, полупроводниковых, диэлектрических, магнитных	Тест	Выполнение теста на 70-100%	Выполнение менее 70%
	материалах и в структурах, созданных на их основе уметь- анализировать и обобщать	Решение стандартных	Продемонстрирован	Задачи не
	полученные данные; выполнять количественные оценки величины эффектов и характеристических параметров с учётом особенностей кристаллической структуры, типа и концентрации легирующих примесей; самостоятельно осваивать и грамотно использовать результатов новых экспериментальных и теоретических исследований в области физики твёрдого тела; самостоятельно собирать, обрабатывать, анализировать и систематизировать научнотехническую информацию.	практических задач	верный ход решения в большинстве задач	решены
	владеть- системным мышлением и восприятием информации, связанной с физическими процессами в конденсированных средах; навыками использования методов количественной оценки основных твердотельных характеристик; методами теоретических исследований для применения в своей профессиональной деятельности	Решение прикладных задач в конкретной предметной области	Продемонстрирован верный ход решения в большинстве задач	Задачи не решены
ДПК-4	Знать – основы теории физики твердого тела, и экспериментальные методы исследования его электрофизических свойств.	Тест	Выполнение теста на 70-100%	Выполнение менее 70%

Уметь - целенаправленно и	Решение стандартных	Продемонстрирова н	Задачи не
эффективно осуществлять	практических задач	верный ход решения	решены
литературный поиск по теме		в большинстве задач	
исследования и корректно ставить			
условия для экспериментального			
нахождения искомых физических			
величин и зависимостей.			
Владеть- навыками сбора,	Решение прикладных	Продемонстрирова н	Задачи не
обработки, анализа и обобщения	задач в конкретной	верный ход решения	решены
научно-технической информации	предметной области	в большинстве задач	
в отраслях знаний, связанных с			
физикой твердого тела			

или «отлично»; «хорошо»;

«удовлетворительно»; «неудовлетворительно».

Компе-	Результаты обучения, характеризующие	Критерии	Отличн	Хорошо	Удовл.	Неудовл.
тенция	сформированность компетенции	оценивания	0	Хорошо	з довл.	·
ДПК-3	Знать - основы физики	Тест	Выполне	Выполнени	Выполнени	В тесте
	конденсированного состояния;		ние	е теста на	е теста на	менее 70%
	физическую сущность		теста на	80- 90%	70- 80%	правильных
	процессов, протекающих в		90-			ответов
	проводящих,		100%			
	полупроводниковых,					
	диэлектрических, магнитных					
	материалах и в структурах,					
	созданных на их основе					
	уметь- анализировать и обобщать	Решение	Задачи	Продемонст	Продемонс	Задачи не
	полученные данные; выполнять	стандартных	решены	р ирован	тр ирован	решены
	количественные оценки	практических	В	верный ход	верный ход	
	величины эффектов и	задач	полном	решения	решения в	
	характеристических параметров		объеме и	всех, но не	большинст	
	с учётом особенностей		получен	получен	ве задач	
	кристаллической структуры,		Ы	верный		
	типа и концентрации		верные	ответ во		
	легирующих примесей;		ответы	всех		
	самостоятельно осваивать и			задачах		
	грамотно использовать					
	результатов новых					
	экспериментальных и					
	теоретических исследований в					
	области физики твёрдого тела;					
	самостоятельно собирать,					
	обрабатывать, анализировать и					
	систематизировать научно-					
	техническую информацию.					
	владеть- системным мышлением	Решение	Задачи	Продемонст	Продемонс	Задачи не
	и восприятием информации,	прикладных	решены	р ирован	тр ирован	решены
	связанной с физическими	задач в	В	верный ход	верный ход	_
	процессами в конденсированных	конкретной	полном	решения	решения в	
	средах; навыками использования	предметной	объеме и	всех, но не	большинст	
	методов количественной оценки	области	получен	получен	ве задач	
	основных твердотельных		ы	верный		
	характеристик; методами		верные	ответ во		
	теоретических исследований для		ответы	всех		
	применения в своей			задачах		
	профессиональной деятельности					
ДПК-4	Знать – основы теории физики	Тест	Выполне	Выполнени	Выполнени	В тесте

твердого тела, и экспериментальные		ние	е теста на	е теста на	менее 70%
методы исследования его		теста на	80- 90%	70- 80%	правильных
электрофизических свойств.		90-			ответов
		100%			
Уметь - целенаправленно и	Решение	Задачи	Продемонст	Продемонс	Задачи не
эффективно осуществлять	стандартных	решены	р ирован	тр ирован	решены
литературный поиск по теме	практических	В	верный ход	верный ход	
исследования и корректно ставить	задач	полном	решения	решения в	
условия для экспериментального		объеме и	всех, но не	большинст	
нахождения искомых физических		получен	получен	ве задач	
величин и зависимостей.		Ы	верный		
		верные	ответ во		
		ответы	всех		
			задачах		
Владеть- навыками сбора,	Решение	Задачи	Продемонст	Продемонс	Задачи не
обработки, анализа и обобщения	прикладных	решены	р ирован	тр ирован	решены
1 1	задач в	В	верный ход	верный ход	
в отраслях знаний, связанных с	конкретной	полном	решения	решения в	
физикой твердого тела	предметной	объеме и	всех, но не	большинст	
	области	получен	получен	ве задач	
		Ы	верный		
		верные	ответ во		
		ответы	всех		
			задачах		

7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)

7.2.1 Примерный перечень заданий для подготовки к тестированию

(минимум 10 вопросов для тестирования с вариантами ответов)

1. Виды классификаций твердых тел.

Все твердые тела можно классифицировать по свойствам симметрии их кристаллических структур, типу химической связи, по электрическим, магнитным, оптическим и др. физическим свойствам.

2. Назовите типы межатомных связей.

Металлическая, ковалентная, ионная и молекулярная типы межатомных связей.

3. Связь среднего макроскопического и локального электрического поля Лоренца.

$$E_{\pi}=\frac{\varepsilon+2}{3}E$$
, где ε - диэлектрическая проницаемость диэлектрика, E - среднее

макроскопическое электрическое поле.
4. Запишите выражение для электронной упругой поляризуемости.

 $\alpha_e = 4\pi \varepsilon_0 r^3$, где α_e — составляющая электронной упругой поляризуемости, ε_0 — абсолютная электрическая постоянная, r — радиус электронной орбиты.

5. Запишите выражение для ионной упругой поляризации.

 $lpha_i=rac{4\piarepsilon_0 r_0^3}{n-1}$, где где $lpha_i$ – составляющая ионной упругой поляризуемости, $arepsilon_0$ – абсо

электрическая постоянная, r — межионное расстояние, n- показатель стотенциале отталкивания Борна.

6. Прямой и обратный пьезоэлектрический эффект.

Пьезоэлектрический эффект проявляется в возникновении заряда на

поверхности образца под действием однородных упругих напряжений. Различают прямой и обратный пьезоэффект. Прямой характеризуется появлением поляризации (P_i) , пропорциональной компоненте упругого напряжения (σ_n) : $P_i = d_{in}\sigma_n$. Обратный — характеризуется деформацией (x_m) под действием электрического поля (E_i) : $x_m = d_{mi}E_i$. Коэффициентом пропорциональности является пьезомодуль d_{mi} .

7. Запишите дисперсионную формулу Дебая.

$$\varepsilon^* = \varepsilon_{\infty} + \frac{\varepsilon_{cm} - \varepsilon_{\infty}}{1 + i\omega\tau}$$
. Здесь ε^* - комплексная диэлектрическая проницаемость, ε_{cm} — диэлектрическая проницаемость для статического случая ($\omega = 0$); ε_{∞} — диэлектрическая проницаемость, обусловленная быстрыми процессами поляризации.

8. Соотношение Кронига – Крамерса.

Соотношения Крамерса — Кронига позволяют по известной частотной зависимости поглощения $\varepsilon''(\Omega)$ вычислить частотную зависимость диэлектрической проницаемости.

$$\dot{\varepsilon}(\omega) - \varepsilon_{\infty} = \frac{2}{\pi} \int \dot{\varepsilon}'(\Omega) \frac{\Omega d \Omega}{\omega^2 - \Omega^2}$$

u, напротив, по частотной зависимости диэлектрической проницаемости $\varepsilon'(\Omega)$ определять частотную зависимость мнимой компоненты диэлектрической проницаемости:

$$\xi''(\omega) = \frac{2}{\pi} \int_{0}^{\infty} \left[\xi(\Omega) - \xi_{\infty} \right] \frac{\omega d \Omega}{\Omega^{2} - \omega^{2}}$$

9. Уравнение Шредингера для кристалла.

 $\hat{H}\Psi = E\Psi$, где \hat{H} — гамильтониан кристалла; Ψ — его волновая функция; E — энергия кристалла.

Волновая функция кристалла зависит от координат всех электронов r и всех атомных ядер R_a : $\psi = \psi(r_1, r_1, ..., r_n, R_1, R_2, R_N)$ Оператор Гамильтона включает в себя:

1) оператор кинетической энергии электронов $\sum_{i} \left(-\frac{\hbar^2}{2m_{\rho}}\Delta_i\right)$,

где \hbar — постоянная Планка h, деленная на 2π ($\hbar = h/2\pi$); m_e — масса электрона; $\Delta_i = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2}$ — оператор Лапласа для i-го электрона;

2) оператор кинетической энергии ядер $\sum_{\alpha}(-\frac{\hbar^2}{2M_{\alpha}}\Delta_{\alpha})$, где M_{α} - масса ядра;

$$\Delta_{\alpha} = \frac{\partial^{2}}{\partial X_{\alpha}} + \frac{\partial^{2}}{\partial Y_{\alpha}} + \frac{\partial^{2}}{\partial Z_{\alpha}};$$

- 3) потенциальную энергию парного взаимодействия электронов $\frac{1}{2}\sum_{i\neq i}\sum_{j\neq i}\frac{e^2}{r_{ii}}$
- 4) потенциальную энергию парного взаимодействия ядер $V_0(R_1, R_2, ... R_N)$;
- 5) потенциальную энергию взаимодействия электронов с ядрами

$$U(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_n, \mathbf{R}_1, \mathbf{R}_2, \ldots, \mathbf{R}_N).$$

C учетом этих составляющих гамильтониана уравнение Шредингера примет вид:

$$\{\sum_{i}(-\frac{\hbar^{2}}{2m_{0}}\Delta_{i})+\sum_{\alpha}(-\frac{\hbar^{2}}{2M_{\alpha}}\Delta_{\alpha})+\frac{1}{2}\sum_{i\neq j}\sum_{j\neq i}\frac{e^{2}}{r_{ij}}+V_{0}(R_{1},R_{2},..R_{N})+U(r_{1},...,r_{n},R_{1},...,R_{N})\}\Psi_{e}=E_{e}\Psi.$$

10. Температурная зависимость уровня Ферми и концентрация носителей в собственном полупроводнике

$$E_F = E_c - \frac{1}{2} E_g + \frac{kT}{2} \ln \frac{N_v}{N_c} = \frac{E_c - E_v}{2} + \frac{kT}{2} \ln \frac{N_v}{N_c}$$

где $E_{\it F}$, $E_{\it c}$ и $E_{\it v}$ — значения энергии Ферми, дна зоны проводимости и потолка валентной зоны. $E_{\it g}$ = $E_{\it c}$ — $E_{\it v}$ —ширина запрещенной зоны.

7.2.2 Примерный перечень заданий для решения стандартных задач

1. Найти напряженность электрического поля, действующего на i-й атом в аморфном диэлектрике с диэлектрической проницаемостью $\epsilon=10$, находящегося под действием среднего электрического поля E=10 В/см.

Решение

Для вычислений воспользуемся формулой $E_{\scriptscriptstyle \Pi} = \frac{\varepsilon + 2}{3} E$. Найдем $E_{\scriptscriptstyle \Pi} = 40$ В/см.

2. Найти радиальную (направление x) и толщинную (направление z) деформацию образца пьзоэлектрика в форме диска толщиной $z_0 = 1$ мм и диаметром D=20 мм, к которому воль оси z приложено напряжение V=1000 В. Компоненты пьезомодуля $d_{33} = 400$ пКл/H, $d_{33} = -100$ пКл/H.

Решение. Найдем относительные деформации образца по формуле

$$x_3 = d_{33}E_3 = 400 \cdot 10^{-12} (10^3 / 10^{-3}) = 4 \cdot 10^{-4}$$

 $u x_1 = d_{31}E_3 = -100 \cdot 10^{-12} (10^3 / 10^{-3}) = -1 \cdot 10^{-4}$

Изменение размеров, соответственно составит:

$$\Delta z = x_3 z_0 = 4 \cdot 10^{-4} \, \text{MM}$$

$$\Delta D = x_1 D = 20 \cdot 10^{-4} \, \text{MM}$$

3. Упругая податливость образца пьезокерамики с разомкнутыми электродами $s^D=0,6\cdot 10^{-11},~a~c~$ разомкнутыми - $s^E=1,0\cdot 10^{-11}~$ м $^2/$ H. Найти коэффициент электромеханической связи k_{cB} .

Решение. $s^D = s^E (1 - k_{cs}^2)$. Откуда находим $k_{cs} = 0.2$

4. Определить частоту, на которой будет наблюдаться в случае релаксации дебаевского максимум мнимой диэлектрической типа компоненты проницаемости ε", если установлено, тангенса ЧТО максимуму диэлектрических потерь tgδ соответствует частота f=1000 Гц. При этом известно, что $\varepsilon_{cm} = 160$ (диэлектрическая проницаемость для статического случая (f = 0) и

 $\varepsilon_{\infty} = 10$ (диэлектрическая проницаемость на частоте $f \rightarrow \infty$)

Найти максимальные значения $\epsilon''_{_{M}}$ и $tg\delta_{_{M}}$.

Решение. Известно, что частоты, на которых наблюдаются максимумы $\varepsilon''_{\scriptscriptstyle M}$ и $tg\delta_{\scriptscriptstyle M}$, соответственно, $f_{\scriptscriptstyle \mathcal{E}}$ и $f_{\scriptscriptstyle td}$ связаны формулой: $f_{\scriptscriptstyle td}=f_{\scriptscriptstyle \mathcal{E}}\sqrt{\varepsilon_{\scriptscriptstyle \mathrm{CT}}/\varepsilon_{\scriptscriptstyle \infty}}$.

Откуда находим $f_{td} = 4000 \Gamma u$

$$\varepsilon''_{M} = (\varepsilon_{cm} - \varepsilon_{\infty})/2 = 75$$

 $tg\delta_{m} = (\varepsilon_{cm} - \varepsilon_{\infty})/2\sqrt{\varepsilon_{cm}\varepsilon_{\infty}} = 1.875$

5. Определить собственную концентрацию носителей заряда n_i в кремнии при температуре 300 K, если известно, что $m_n^*=1,08m_0,\,m_p^*=0,56m_0$ при T=300 K, $E_g=1,11$ 9B, а kT=0,0255 9B.

Решение.

$$n_{i} = (N_{c}N_{v})^{1/2}exp(-E_{g}/2kT)$$

$$N_{c} = 2(\frac{2\pi m_{n}^{*}kT}{h^{2}})^{3/2} = 4.82 \cdot 10^{15} (m*_{n}/m_{0})^{3/2} \cdot T^{3/2} = 2.5 \cdot 10^{19} (m*_{n}/m_{0})^{3/2} \cdot (T/300)^{3/2}$$

$$N_{v} = 2(\frac{2\pi m_{p}^{*}kT}{h^{2}})^{3/2} = 4.82 \cdot 10^{15} (m*_{p}/m_{0})^{3/2} \cdot T^{3/2} = 2.5 \cdot 10^{19} (m*_{p}/m_{0})^{3/2} \cdot (T/300)^{3/2}$$

Подставив численные значения, получим: $n_i = 1.9 \cdot 10^{10} \text{ см}^{-3}$.

6. Кристалл невырожденного полупроводника с кубической элементарной ячейкой (параметр элементарной ячейки а = 0.4 нм) имеет геометрические размеры 1x1x1 см. Определить число квантовых состояний N в зоне проводимости и максимально возможное число электронов N_e в ней.

Решение. В разрешенной зоне кристалла имеется $N = L_1 \cdot L_2 \cdot L_3 / a^3$ различных энергетических состояний, где L_i - размер кристалл в i -м направлении.

Находим: $N = 0.625 \cdot 10^{23}$; $N_e = 2 N = 1.25 \cdot 10^{23}$.

7. Определить энергетический уровень E_n донорного примесного атома пятой группы в германии, диэлектрическая проницаемость которого $\varepsilon = 16$, а эффективная масса электрона $m^* = 0.25 m_0$, где m_0 – масса свободного электрона.

Решение. Воспользуемся формулой
$$E_n=E_c-\frac{m^*Z^2e^4}{8(harepsilonarepsilon_0)^2}\frac{1}{n^2}$$
, где E_c-

энергетический уровень, соответствующий дну зоны проводимости, h- постоянная Планка, ε_0 — абсолютная электрическая постоянная, n — квантовое число.

Подставив численные значения e, m^* , h, ε_0 и выразив энергию в электрон-вольтах, то получим: $E_n = E_c - \frac{13,52Z^2}{\varepsilon^2} (\frac{m^*}{m_c}) \frac{1}{n^2} = E_c - \frac{E_d}{n^2}$

где число 13.52 соответствует значению энергии ионизации атома водорода в электрон-вольтах, а $E_d=13,52Z^2m^*/(\varepsilon^2m_0)$ - энергия основного состояния атома донорной примеси. Полагая n=1 и Z=1, B итоге находим

$$E_n = E_c$$
 - $E_d \approx 0.01$ эВ

8. Вычислить значение плотности квантовых состояний в зоне проводимости полупроводника для случая (E-E_c)= 0,1 эВ, при условии, что эффективная масса плотности состояний для электрона m^*_{dn} численно равна массе свободного электрона m_0 .

Решение

 $N(E)=4\pi(rac{2m_{dn}^*}{h^2})^{3/2}(E-E_c)^{1/2}$. Подставив численные значения, получим $N(E)=0.63\cdot 10^{27}~{\it M}^{-3}$ Дж $^{-1}$

9. Найти ширину p-n- перехода δ_0 в кремневом диоде при отсутствии внешнего напряжения, если известна концентрация акцепторной примеси $N_a=10^{16}~{\rm cm}^{-3}$ в p- области и донорной примеси $N_d=10^{17}~{\rm cm}^{-3}$ в n- области. Диэлектрическая проницаемость кремния $\varepsilon=12$.

Решение

Воспользуемся формулой
$$\delta_o = \sqrt{\frac{2 \, \varepsilon \, \varepsilon_o (N_a + N_d) \, \varphi_\kappa}{q \, N_a \, N_d}}$$

Найдем контактную разность потенциалов
$$\varphi_{\rm K}=rac{kT}{q}\lnrac{N_{dn}N_{ap}}{n_i^2} \ =0,64~B$$

Подставив численные значения в формулу, вычислим $\delta_0 = 0.316$ мкм 10. Однородно легированный кремний n — типа имеет концентрацию легирующей примеси $N_D = 10^{15}$ см⁻³. Оценить величину дебаевской длины экранирования при T = 300 K.

Решение.

Рассчитать длину экранирования Дебая для кремния, содержащего лигирующую примесь $N_A = 10^{15} \ \text{см}^{-3}$ при T=300 K. Найдем ещё раз значения теплового потенциала при T= 300 K

$$\varphi_m = (kT/e) = 0.0256 B$$

$$L_{\rm D} = \sqrt{\frac{\epsilon \epsilon_0 \phi_{\rm T}}{\rm qN}} = L_{\rm D} = \left[\frac{11.7 \cdot 8.85 \cdot 10^{-14} \cdot 2.587 \cdot 10^{2}}{1.6 \cdot 10^{-19} \cdot 10^{15}} \right]^{1/2} = 0.129 \cdot 10^{-4} (\hat{\boldsymbol{n}}) \approx 0.13 \ \text{мкм}$$

(минимум 10 вопросов для тестирования с вариантами ответов)

7.2.3 Примерный перечень заданий для решения прикладных задач

- 1. Какая из молекулярных связей в кристалле наиболее слабая?
- а. Металлическая
- б. Ковалентная
- в. Молекулярная

Правильный ответ – в

- 2. Как изменяется с повышением температуры сопротивление полупроводника?
- а. Возрастает
- б. Уменьшается
- в. Температура не влияет на сопротивление.

 Π равильный ответ - а

- 3. Диэлектрическая проницаемость это
- а. Скаляр
- б. Вектор
- в. Тензор

 Π равильный ответ - в

- 4. Время релаксации тепловой поляризации
- а. Уменьшается с ростом температуры
- б. Повышается с ростом температуры
- в. Не зависит от температуры

Правильный ответ – а

- 5. Напряженность электрического поля пробоя диэлектрика
- а. Не зависит от его толщины
- б. Зависит от толщины
- в. Зависит от толщины только в случае тонких пленок

Правильный ответ – в

- 6. Наиболее быстрым механизмом поляризации диэлектрика является
- а. Электронная упругая поляризация
- б. Электронная тепловая поляризация
- в. Ионная упругая поляризация

Правильный ответ – а

- 7. В чем сущность метода самосогласованного поля?
- а. Электрон взаимодействует с полем, создаваемым всеми др. электронами.
- б. Электрон взаимодействует с полем, создаваемым всеми электронами.
- в. Электрон взаимодействует с полем, создаваемым всеми электронами и ядрами.

Правильный ответ – б

- 8. Что представляет собой волновая функция в периодическом поле кристаллической решетки?
- а. Плоскую модулированную по амплитуде с периодичностью решетки кристалла волну, бегущую в направлении волнового вектора
 - б. Плоскую волну, бегущую в направлении волнового вектора
 - в. Плоскую стоячую волну

 Π равильный ответ - б

- 9. Какую размерность имеет плотность квантовых состояний в зоне?
- а. Дж⁻¹м⁻³
- б. м⁻³
- в. Дж⁻¹

 Π равильный ответ - а

- 10. Как энергия электрона зависит от волнового вектора k у нижнего края энергетической зоны.
 - а. Энергия электрона у нижнего края энергетической зоны пропорциональна k²
 - б. Энергия электрона у нижнего края энергетической зоны пропорциональна к
 - в. Энергия электрона у нижнего края энергетической зоны пропорциональна k^3

Правильный ответ – а

7.2.4 Примерный перечень вопросов для подготовки к зачету

- 1. Виды классификаций твердых тел.
- 2. Типы межатомных связей.
- 3. Элементарная теория электропроводности.
- 4. Электрическая индукция и поляризация.
- 5. Дипольный момент системы зарядов.
- 6. Тензор диэлектрической проницаемости.
- 7. Нелинейная диэлектрическая проницаемость.

- 8. Среднее макроскопическое и локальное поле, поле Лоренца.
- 9. Уравнение Клаузиуса Мосотти.
- 10. Поляризуемость диэлектрика. Электронная упругая поляризация.
- 11. Ионная упругая поляризация.
- 12. Дипольная упругая поляризация.
- 13. Ионная тепловая поляризация.
- 14. Миграционная поляризация.
- 15. Время релаксации. Уравнение Аррениуса.
- 16 Дипольная тепловая поляризация.
- 17. Схемы замещения диэлектрика с потерями. Диэлектрические потери, обусловленные электропроводн
- 18. Пьезоэлектрический эффект и электрострикция.
- 19. Индуцированный пьезоэлектрический эффект.
- 20. Коэффициент электромеханической связи.
- 21. Потери при тепловой релаксационной поляризации. Дисперсионная формула Дебая. Комплексная диэлектрическая проницаемость.
- 22. Тангенс угла диэлектрических потерь и мощность потерь. Расчет частотной зависимости диэлектрической проницаемости, и диэлектрических потерь для модели релаксационной поляризации.
- 23. Диэлектрическая релаксация. Дисперсионная формула Дебая..
- 24. Время релаксации. Метод Коул-Коула при обработке экспериментальных результатов.
- 25. Особенности спектра резонансной диэлектрической дисперсии.
- 26. Комплексная диэлектрическая проницаемость. Соотношение Кронига Крамерса.
- 27. Электрический пробой твердых диэлектриков. Виды электрического пробоя.
- 28. Электронный, пробой твердых диэлектриков. Стримерная модель пробоя.
- 29. Тепловой пробой.
- 30. Электрохимический пробой диэлектриков.
- 31. Электронные состояния в идеальном кристалле. Уравнение Шредингера для кристаллов.
- 32. Уравнение Шредингера для кристаллов. Адиабатическое приближение. Одноэлектронное приближение (метод Хартри-Фока).
- 33. Волновая функция электрона в периодическом поле (функция Блоха). Приближение сильно связанных электронов в кристаллах.
- 34. Энергетический спектр электронов в периодическом потенциальном поле.
- 35. Квазиимпульс электрона в периодическом поле.
- 36. Зоны Бриллюэна.
- 37. Эффективная масса носителей заряда. Различия эффективных масс электронов и дырок.
- 38. Изоэнергетические поверхности. Эффективная масса носителей.
- 39. Определение эффективной массы носителей заряда методом циклотронного резонанса.
- 40. Водородоподобная модель примесных состояний в кристаллах полупроводников.
- 41. Энергетические уровни примесных атомов.
- 42 Статистика электронов и дырок в полупроводниках. Плотность квантовых состояний в зонах.
- 43. Концентрация электронов и дырок в полупроводниках. Функция распределения Ферми-Дирака. Эффективная плотность состояний.
- 44. Уровень Ферми. Равновесная концентрация электронов и дырок в зонах.
- 45. Положение уровня Ферми в невырожденном примесном полупроводнике.
- 46. Концентрация носителей заряда в собственном полупроводнике.
- 47. Температурная зависимость уровня Ферми и концентрация носителей в собственном полупроводнике.
- 48. Зависимость положения уровня Ферми от температуры для невырожденного полупроводника с частично компенсированной примесью.

7.2.5 Примерный перечень вопросов для подготовки к экзамену

- 1. Два способа описания состояния коллектива частиц: термодинамический и статистический основные особенности каждого метода. Два типа частиц (фермионы и бозоны), основные отличия и особенности. Вырожденный и невырожденный коллектив частиц.
- 2. Основные понятия статистического метода описания коллективов частиц: «полная функция распределения», «число состояний», «плотность состояний» и «функция распределения». Дать определение, объяснить смысл этих терминов. Зависимость числа

состояний от энергии (функция и график). Чем функция, определяющая плотность состояний электронов, отличается от функции, определяющей плотность состояний бозонов?

- 3. Функция распределения для невырожденного газа функция Максвелла-Больцмана. Привести графики зависимости функции распределения М-Б и числа частиц от энергии. Какие частицы описываются с помощью распределения М-Б?
- 4. Функция распределения для вырожденного газа функция Ферми-Дирака. Привести графики зависимости функции распределения Ф-Д и числа частиц от энергии. Какие частицы описываются с помощью распределения Ф-Д?
 - 5. Влияние температуры на функцию распределения Ферми-Дирака.
- 6. Основные особенности электрических свойств полупроводников. Объяснить механизм электропроводности полупроводников. Понятия «генерация» и «рекомбинация».
- 7. Равновесная концентрация электронов в зоне проводимости. Что означает термин «равновесная концентрация»? Как электроны оказываются в зоне проводимости. Вывод формулы, определяющей величину n_0 . Знать формулу для p_0 .
- 8. Закон действующих масс. Зависимость концентрации свободных носителей заряда от температуры в собственном полупроводнике. Определение ширины запрещённой зоны собственного п/п по температурной зависимости сопротивления.
- 9. Уравнение электронейтральности в общем виде. Положение уровня Ферми в собственном полупроводнике. Изменение положения уровня Ферми в собственном полупроводнике при изменении температуры.
- 10. Примесные полупроводники. Полупроводники n- и p типа. Механизм ионизации примеси (донорной и акцептоной).
- 11. Положение уровня Ферми в полупроводнике с донорными примесями. Область низких и умеренных температур. График зависимости ln(n) от температуры. График зависимости E_F от температуры.
- 12. Положение уровня Ферми в полупроводнике с донорными примесями. Область высоких температур. График зависимости ln(n) от температуры. График зависимости $E_{\rm F}$ от температуры.
- 13. Полупроводник во внешнем электрическом поле. Влияние внешнего поля на концентрацию свободных носителей заряда в приповерхностной области, на объемный заряд и энергетические характеристики (напряженность поля, энергия носителей, потенциал). Графики для разной ориентации поля относительно поверхности образца (для разной полярности).
- 14. Термоэлектронная эмиссия. «Работа выхода электрона», «энергия электронного сродства». Контакт металл-металл. Внешняя и внутренняя разность потенциалов.
- 15. Контакт металл-полупроводник. Запорный и антизапорный слой. Искривление зон вблизи области контакта. Концентрация свободных носителей заряда в области контакта. Глубина проникновения электрического поля в полупроводник.
- 16. Выпрямление тока на контакте металл-полупроводник. Прямое и обратное смещение. ВАХ контакта.
- 17. Контакт металл-полупроводник. Глубина проникновения. Диодная и диффузионная теории. Зависимость вида ВАХ контакта от теории, описывающей его поведение.
- 18. Контакт электронного и дырочного полупроводников. Возникновение электрического поля. Дрейфовые и диффузионные потоки. Глубина проникновения (область объёмного заряда). Барьерная ёмкость.
- 19. Выпрямление тока на p-n-переходе. Характер потоков носителей заряда (основные, неосновные), формирующих прямой и обратный токи через p-n-переход.
- 20. Условия, при которых p-n-переход перестаёт быть выпрямляющим (виды пробоев). Гетеропереход.
- 21. Нормальные колебания атомной решетки. Минимальная и максимальная длины волн нормальных колебаний. Дисперсионные кривые. Оптические и акустические колебания.
- 22. Нормальные колебания атомной решетки. Спектр нормальных колебаний. Дебаевская частота. Температура Дебая.

- 23. Понятие о фононах. Энергия фононов.
- 24. Теплоемкость. Теплоемкость решетки. Закон Дебая, закон Дюлонга и Пти. Теплоемкость электронного газа.
 - 25. Виды классификаций твердых тел.
 - 26. Типы межатомных связей.
 - 27. Элементарная теория электропроводности.
- 28. Электрическая индукция и поляризация. Дипольный момент системы зарядов диэлектрической проницаемости.
 - 29. Нелинейная диэлектрическая проницаемость.
 - 30. Среднее макроскопическое и локальное поле, поле Лоренца.
 - 31. Уравнение Клаузиуса Мосотти.
 - 32. Поляризуемость диэлектрика. Электронная упругая поляризация.
 - 33. Ионная и дипольная упругая поляризация.
- 34. Ионная тепловая поляризация. Миграционная поляризация. Время релаксации. У Аррениуса.
 - 34 Дипольная тепловая поляризация. Время релаксации. Уравнение Аррениуса.
- 35. Схемы замещения диэлектрика с потерями. Диэлектрические потери, обусло электропроводностью.
- 36. Пьезоэлектрический эффект и электрострикция. Индуцированный пьезоэлект эффект. Коэффициент электромеханической связи.
- 37. Потери при тепловой релаксационной поляризации. Дисперсионная формул Комплексная диэлектрическая проницаемость.
- 38. Тангенс угла диэлектрических потерь и мощность потерь. Расчет частотной зав диэлектрической проницаемости, и диэлектрических потерь для модели релаксационной поляри
 - 39. Диэлектрическая релаксация. Дисперсионная формула Дебая..
 - 40. Время релаксации. Метод Коул-Коула при обработке экспериментальных результатс
 - 41. Особенности спектра резонансной диэлектрической дисперсии.
 - 42. Комплексная диэлектрическая проницаемость. Соотношение Кронига Крамерса.
 - 43. Электрический пробой твердых диэлектриков. Виды электрического пробоя.
 - 44. Электронный, пробой твердых диэлектриков. Стримерная модель пробоя.
 - 45. Электронные состояния в идеальном кристалле. Уравнение Шредингера для кристал
- 46. Уравнение Шредингера для кристаллов. Адиабатическое приближение. Одноэле приближение (метод Хартри-Фока).
- 47. Волновая функция электрона в периодическом поле (функция Блоха). Приближени связанных электронов в кристаллах.
 - 48. Энергетический спектр электронов в периодическом потенциальном поле.
 - 49. Квазиимпульс электрона в периодическом поле. Зоны Бриллюэна.
 - 50. Энергия электрона у дна и потолка зоны.
 - 51. Эффективная масса носителей заряда.
 - 52. Определение эффективной массы носителей заряда методом циклотронного резонан
 - 53. Водородоподобная модель примесных состояний в кристаллах полупроводников.
- 54 Статистика электронов и дырок в полупроводниках. Плотность квантовых состояний в зонах.
- 55. Концентрация электронов и дырок в полупроводниках. Функция распределения Ферми-Дирака. Эффективная плотность состояний.
 - 56. Уровень Ферми. Равновесная концентрация электронов и дырок в зонах.
 - 57. Положение уровня Ферми в невырожденном примесном полупроводнике.
 - 58. Концентрация носителей заряда в собственном полупроводнике.
- 59. Температурная зависимость уровня Ферми и концентрация носителей в собственном полупроводнике.
- 60. Зависимость положения уровня Ферми от температуры для невыро: полупроводника с частично компенсированной примесью

7.2.6. Методика выставления оценки при проведении промежуточной аттестации

Промежуточная аттестация осуществляется по нескольким критериям:

- 1. Тестирование по темам курса тест-задания.
- 1. Оценка «Неудовлетворительно» ставится в случае, если студент ответил правильно на 40% вопросов и меньше.
- 2. Оценка «Удовлетворительно» ставится в случае, если студент ответил правильно на 40-60% вопросов.
- 3. Оценка «Хорошо» ставится в случае, если студент ответил правильно на 60-80% вопросов.
- 4. Оценка «Отлично» ставится, если студент ответил правильно на 80% вопросов и более.
 - 2. Ответы на семинарских занятиях по теме курса.
 - 3. Подготовка и защита курсового проекта.
 - 4. Экзамен.

7.2.7 Паспорт оценочных материалов

	2.7 Паспорт оценочных мато	1 -	1
№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемо й компетенции	Наименование оценочного средства
1	Введение в ФТТ	ДПК-3, ДПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
2	Поляризация диэлектриков в электрическом поле	ДПК-3, ДПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
3	Диэлектрические потери.	ДПК-3, ДПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
4	Пробой твердых диэлектриков.	ДПК-3, ДПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
5	Электронные состояния в идеальном кристалле.	ДПК-3, ДПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
6	Основы зонной теории твердых тел.	ДПК-3, ДПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту
7	Статистика электронов и дырок в полупроводниках	ДПК-3, ДПК-4	Тест, контрольная работа, защита лабораторных работ, защита реферата, требования к курсовому проекту

8	Контактные явления в	ДПК-3, ДПК-4	Тест, контрольная работа, защита
	полупроводниках		лабораторных работ, защита
			реферата, требования к
			курсовому проекту
9	Люминесценция	ДПК-3, ДПК-4	Тест, контрольная работа, защита
			лабораторных работ, защита
			реферата, требования к
			курсовому проекту
10	Колебания атомов	ДПК-3, ДПК-4	Тест, контрольная работа, защита
	кристаллической решетки		лабораторных работ, защита
			реферата, требования к
			курсовому проекту

Защита курсовой работы, курсовой работы или отчета по всем видам практик осуществляется согласно требованиям, предъявляемым к работе, описанным в методических материалах. Примерное время защиты на одного студента составляет 20 мин.

8. УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения дисциплины

		Основная литература		
1	Павлов П. В. Хох	лов Физика твердого тела. – М.:	2000,	10
	А. Ф.	Высшая школа 2000. – 384 с.	печатн.	
2	Шалимова К.В.	Физика полупроводников М.:Энергия 1976 416 с.	1976, печатн.	10
3	Коротков Л.Н., Стогней О.В., Сысоев О.И.	Физика твердого тела. Части I, II. (Уч. пособие)	Изд. ВГТУ, Воронеж, 2010 г., 174 с (электронн ое издание)	
		Дополнительная литература		
4	4 С.А. Гриднев. Физика пьезоэлектрических кристаллов Воронеж: изд. ВГТУ 2001. – 362 с.		2001, печатн.	10
5			1997, печатн	2

Методические разработки				
6	Калгин А.В., Коротков Л.Н., Стогней О.В., Янченко Л.И.	Методические указания к выполнению практических работ по дисциплине «Физика твердого тела» для студентов направлений 16.03.01 «Физическая электроника», 22.03.01 «Материаловедение и технология материалов» (профиль «Конструирование и производство изделий из композиционных материалов») очной формы обучения (№124-2014)	Воронеж, ВГТУ, 2014,- (1500 кбайт, 1,6 уч. изд. листа)	элетро Н
7	Гриднев С.А., Коротков Л.Н.	Методические указания к выполнению лабораторных работ № 1-5 по дисциплине «Физика твердого тела» для студентов направлений 223200. 62 техническая физика, (профиль «Физическая электроника»),150100.62 «Материаловедение и технология материалов» (профиль «Конструирование и производство изделий из композиционных материалов» и 222900.620 «нанотехнологии и микросистемная техника», (профиль «Компоненты микро- и наносистемной техники» очной формы обучения.(№244-2013).	Воронеж, ВГТУ, 2013.	20
8	С.А. Гриднев	Методические указания к выполнению и оформлению курсовых работ по дисциплине «Физика твердого тела» для студентов направления 223200.62 «Техническая физика (профиль «Прикладная физика твердого тела») очной формы обучения / ФГБОУ ВПО «Воронежский государственный технический университет»; сост. С.А. Гриднев. Воронеж, 2015. 20 с.	Воронеж, ВГТУ, 2015.	

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети

«Интернет», современных профессиональных баз данных и информационных справочных систем:

Microsoft Word, Microsoft Excel, Internet Explorer, Origin Укажите перечень информационных технологий

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебно-научная лаборатории кафедры ФТТ (002/1) и 226/1 с научноисследовательскими измерительными стендами, комплексами и оборудованием.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Физика твердого тела» читаются лекции, проводятся практические занятия и лабораторные работы, выполняется курсовая работа.

Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Практические занятия направлены на приобретение практических навыков расчета _физических величин. Занятия проводятся путем решения конкретных задач в аудитории.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Методика выполнения курсовой работы изложена в учебно-методическом пособии. Выполнять этапы курсовой работы должны своевременно и в установленные сроки.

Контроль усвоения материала дисциплины производится проверкой курсовой работы, защитой курсовой работы.

Вид учебных занятий	Деятельность студента
Лекция	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с
	выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на лекции или на практическом занятии.
Практическое занятие	Конспектирование рекомендуемых источников. Работа с конспектом лекций, подготовка ответов к контрольным вопросам, просмотр рекомендуемой литературы. Прослушивание аудио- и видеозаписей по заданной теме, выполнение расчетнографических заданий, решение задач по алгоритму.
Лабораторная работа	Лабораторные работы позволяют научиться применять теоретические знания, полученные на лекции при решении конкретных задач. Чтобы наиболее рационально и полно

	использовать все возможности лабораторных для подготовки к ним необходимо: следует разобрать лекцию по соответствующей теме, ознакомится с соответствующим разделом учебника, проработать дополнительную литературу и источники, решить задачи и выполнить другие письменные задания.
Самостоятельная работа	Самостоятельная работа студентов способствует глубокому усвоения учебного материала и развитию навыков самообразования. Самостоятельная работа предполагает следующие составляющие: - работа с текстами: учебниками, справочниками, дополнительной литературой, а также проработка конспектов лекций; - выполнение домашних заданий и расчетов; - работа над темами для самостоятельного изучения;
	 участие в работе студенческих научных конференций, олимпиад; подготовка к промежуточной аттестации.
Подготовка к промежуточной аттестации	Готовиться к промежуточной аттестации следует систематически, в течение всего семестра. Интенсивная
	подготовка должна начаться не позднее, чем за месяц-полтора до промежуточной аттестации. Данные перед зачетом, экзаменом три дня эффективнее всего использовать для повторения и систематизации материала.

АННОТАЦИЯ

к рабочей программе дисциплины «Физика твердого тела»

Направление подготовки 16.03.01 ТЕХНИЧЕСКАЯ ФИЗИКА Профиль — физическая электроника Квалификация выпускника бакалавр Нормативный период обучения 4 года Форма обучения очная Год начала подготовки 2017

Цель изучения дисциплины: обеспечение фундаментальных знаний в области физики твёрдого тела.

Задачи изучения дисциплины:

- дать представление о строении и основных физических свойствах твердых тел и теоретических подходах к их описанию;
- научить студентов использовать сведения о физических закономерностях в конденсированных средах в практических целях;
- привить навыки экспериментального исследования электрофизических процессов в твердых телах.

Перечень формируемых компетенций:

ДПК-3 - способностью использовать фундаментальные законы основных профессиональных дисциплин выбранного профиля в профессиональной деятельности

ДПК-4 - способностью собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования, использовать достижения отечественной и зарубежной науки, техники и технологии в области выбранного профиля технической физики

Общая трудоемкость дисциплины: 8 з.е.

Форма итогового контроля по дисциплине: Экзамен