МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Воронежский государственный технический университет»

УТВЕРЖДАЮ Декан факультета Небольсин В.А. «31» автуста 2018 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

«Устройства генерирования и формирования сигналов»

Направление подготовки 11.04.01 Радиотехника

Профиль <u>Радиотехнические средства</u> <u>обработки и защиты информации в</u> каналах связи

Квалификация выпускника магистр

Нормативный период обучения 2 года

Форма обучения очная

Год начала подготовки 2018

Автор программы

/Бочаров М.И./

Заведующий кафедрой

Систем информационной

безопасности

√Остапенко А.Г./

Руководитель ОПОП

/Останков А.В./

Воронеж 2018

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цели дисциплины

Усвоение основ теории радиочастотных колебаний и формирование различных видов модуляции радиочастотного диапазона; приобретение навыков анализа технических характеристик, расчета и проектирования функциональных **У**ЗЛОВ радиопередающих устройств; навыков экспериментального исследования характеристик приобретение отдельных функциональных узлов и всего радиопередатчика.

1.2. Задачи освоения дисциплины

Изучение основных физических процессов, происходящих генераторных и усилительных устройствах. Освоение принципов работы генераторных, усилительных и модуляционных устройств. Приобретение навыков построения и расчета высокочастотных устройств. Приобретение экспериментального исследования навыков характеристик генерирования и формирования функциональных узлов устройств сигналов И всего устройства В целом. Приобретение функциональных узлов устройств генерирования и моделирования формирования сигналов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Устройства генерирования и формирования сигналов» относится к дисциплинам базовой части блока Б1.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ

Процесс изучения дисциплины «Устройства генерирования и формирования сигналов» направлен на формирование следующих компетенций:

- ОПК-2 Способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы
- ОПК-3 Способен приобретать и использовать новую информацию в своей предметной области, предлагать новые идеи и подходы к решению инженерных задач

ОПК-4 - Способен разрабатывать и применять специализированное программно-математическое обеспечение для проведения исследований и решения инженерных задач

Компетенция	Результаты обучения, характеризующие сформированность компетенции
ОПК-2	Знать - современные методы исследования,
	представлять и аргументировано защищать

	результаты выполненной работы				
	Уметь - представлять и аргументировано				
	защищать результаты выполненной работы				
	Владеть - представлять и аргументировано				
	защищать результаты выполненной работы				
ОПК-3	Знать - новую информацию в своей				
	предметной области, предлагать новые идеи и				
	подходы к решению инженерных задач				
	Уметь - приобретать и использовать новую				
	информацию в своей предметной области,				
	предлагать новые идеи и подходы к решению				
	инженерных задач				
	Владеть - новой информацией в своей				
	предметной области, предлагать новые идеи и				
	подходы к решению инженерных задач				
ОПК-4	Знать - специализированное				
	программно-математическое обеспечение для				
	проведения исследований и решения				
	инженерных задач				
	Уметь - разрабатывать и применять				
	специализированное				
	программно-математическое обеспечение для				
	проведения исследований и решения				
	инженерных задач				
	Владеть - разрабатывать и применять				
	специализированное				
	программно-математическое обеспечение для				
	проведения исследований и решения				
	инженерных задач				

4. ОБЪЕМ ДИСЦИПЛИНЫОбщая трудоемкость дисциплины «Устройства генерирования и формирования сигналов» составляет 4 з.е.

Распределение трудоемкости дисциплины по видам занятий

очная форма обучения

Виды учебной работы	Всего часов	Семестры
Аудиторные занятия (всего)	30	30
В том числе:		

Лекции	10	10
Лабораторные работы (ЛР)	20	20
Самостоятельная работа	114	114
Виды промежуточной аттестации - зачет с оценкой	+	+
Общая трудоемкость		
академические часы	144	144
3.e.	4	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

5.1 Содержание разделов дисциплины и распределение трудоемкости по видам занятий

очная форма обучения

		, <u>, , , , , , , , , , , , , , , , , , </u>		_		
№ п/п	Наименование темы	Содержание раздела	Лекц	Лаб. зан.	CPC	Всего, час
1	Повышение эффективности ключевых усилителей мощности и варакторных умножителей частоты	Повышение эффективности КУМ. Ключевой режим и условия его схемной реализации. Основные расчетные соотношения. Реализация КУМ на МОЅГЕТ и ІСВТ транзисторах Особенности работы ключевого УМ на высоких частотах ВУЧ и принцип их реализации. Энергетические соотношения, схемная реализация и особенности работы варакторов в диапазоне СВЧ.	2	4	18	24
2	Цифровые синтезаторы частоты и с использованием поверхностных акустических волн	Методы построения цифровых СЧ. Цифровые СЧ вычислительного	2	4	18	24
3	Спектрально эффективные виды модуляции .Однополосная модуляция	1 1 1	2	4	18	24
4	Дискретные виды модуляции. Особенности формирования цифровых сигналов	Формирование манипулированных сигналов. Схемы дискретных формирователей ЧМ и ФМ. Спектры дискретного сигнала с ЧМ и ФМ. Методы ограничения полосы частот. Основы цифрового формирования сигналов и особенности цифрового	2	4	20	26

		формирования сигналов.				
5	1	Классификация побочных излучений. Побочные излучения, возникающие в процессе формирования несущей. Интермодуляционное излучение. Методы уменьшения паразитного и побочного колебаний.	2	2	20	24
6	Шумовое и паразитное излучения РПДУ	Шумовое излучение и излучение, обусловленное паразитной модуляцией Источники шумового излучения. Влияние высокочастотных каскадов РПДУ на уровень шумового излучения. Причины возникновения паразитных колебаний. Эквивалентные схемы паразитных колебаний типовых усилительных каскадов: общий коллектор, общая база.	-	2	20	22
		Итого	10	20	114	144

5.2 Перечень лабораторных работ

Неделя	Наименование лабораторной работы				
семестра					
	1 семестр				
1-2	«Моделирование варакторных умножителей частоты»				
5-6	«Исследование одноконтурного автогенератора с емкостной обратной				
	связью»				
9-11	«Исследование основных свойств цифрового синтезатора частот»				
13-15	«Исследование формирователя однополосного сигнала»				
17-18	«Исследование электрических характеристик передатчика с				
	аналоговыми и дискретными видами модуляции»				

6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ (РАБОТ) И КОНТРОЛЬНЫХ РАБОТ

В соответствии с учебным планом освоение дисциплины не предусматривает выполнение курсового проекта (работы) или контрольной работы.

7. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

7.1. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.1.1 Этап текущего контроля

Результаты текущего контроля знаний и межсессионной аттестации оцениваются по следующей системе:

«аттестован»;

«не аттестован».

Компе-	Результаты обучения, характеризующие	Критерии	Аттестован	Не аттестован
--------	---	----------	------------	---------------

тенция	сформированность компетенции	оценивания		
ОПК-2	Знать - современные методы	Знание учебного	Выполнение работ	Невыполнение
	исследования, представлять и	материала и готовность	в срок,	работ в срок,
	аргументировано защищать	к его обсуждению и	предусмотренный	предусмотренны
	результаты выполненной работы	применению в рамках	в рабочих	й в рабочих
		выполнения заданий на	программах	программах
		практических занятиях		1 1
	Уметь - представлять и	Решение стандартных	Выполнение работ	Невыполнение
	аргументировано защищать	практических задач в	в срок,	работ в срок,
	результаты выполненной работы	соответствии с	предусмотренный	
		индивидуальным	в рабочих	й в рабочих
		вариантом задания	программах	программах
	Владеть - представлять и	Решение прикладных	Выполнение работ	Невыполнение
	аргументировано защищать	задач из области	в срок,	работ в срок,
	результаты выполненной работы	статистического	предусмотренный	
	r	анализа	в рабочих	й в рабочих
		радиотехнических	программах	программах
		устройств и систем	r · r · · ·	r · r · · ·
ОПК-3	Знать - новую информацию в	Знание учебного	Выполнение работ	Невыполнение
	своей предметной области,	материала и готовность	в срок,	работ в срок,
	предлагать новые идеи и подходы	-	предусмотренный	1 1
	к решению инженерных задач	применению в рамках	в рабочих	й в рабочих
	- F	выполнения заданий на	программах	программах
		практических занятиях	r·r··	r·r···
	Уметь - приобретать и	Решение стандартных	Выполнение работ	Невыполнение
	использовать новую информацию	_	в срок,	работ в срок,
	в своей предметной области,	соответствии с	предусмотренный	
	предлагать новые идеи и подходы		в рабочих	й в рабочих
	к решению инженерных задач	вариантом задания	программах	программах
	Владеть - новой информацией в	Решение прикладных	Выполнение работ	Невыполнение
	своей предметной области,	задач из области	в срок,	работ в срок,
	предлагать новые идеи и подходы		предусмотренный	
	к решению инженерных задач	анализа	в рабочих	й в рабочих
	- F	радиотехнических	программах	программах
		устройств и систем	iip or p william.	программан
ОПК-4	Знать - специализированное	Знание учебного	Выполнение работ	Невыполнение
	программно-математическое	материала и готовность	в срок,	работ в срок,
	обеспечение для проведения	к его обсуждению и	предусмотренный	
	исследований и решения	применению в рамках	в рабочих	й в рабочих
	инженерных задач	выполнения заданий на	программах	программах
		практических занятиях		
	Уметь - разрабатывать и	Решение стандартных	Выполнение работ	Невыполнение
	применять специализированное	практических задач в	в срок,	работ в срок,
	программно-математическое	соответствии с	предусмотренный	
	обеспечение для проведения	индивидуальным	в рабочих	й в рабочих
	исследований и решения	вариантом задания	программах	программах
	инженерных задач			L L hamming
	Владеть - разрабатывать и	Решение прикладных	Выполнение работ	Невыполнение
	применять специализированное	задач из области	в срок,	работ в срок,
	программно-математическое	статистического	предусмотренный	
			в рабочих	й в рабочих
	обеспечение для проведения исследований и решения	анализа	_	_
	_	радиотехнических	программах	программах
	инженерных задач	устройств и систем		

7.1.2 Этап промежуточного контроля знаний Результаты промежуточного контроля знаний оцениваются в 1 семестре для очной формы обучения по четырехбалльной системе:

«отлично»;

«хорошо»;

«удовлетворительно»;

«неудовлетворительно».

«неудовлетворительно».						
Компе- тенция	Результаты обучения, характеризующие сформированность компетенции	Критерии оценивания	Отлично	Хорошо	Удовл.	Неудовл.
ОПК-2	Знать - современные методы исследования, представлять и аргументировано защищать результаты выполненной работы	Тест	Выполнени е теста на 90- 100%	Выполнение теста на 80-90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь - представлять и аргументировано защищать результаты выполненной работы	Решение стандартных практически х задач	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть - представлять и аргументировано защищать результаты выполненной работы	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
ОПК-3	Знать - новую информацию в своей предметной области, предлагать новые идеи и подходы к решению инженерных задач	Тест	Выполнени е теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70- 80%	В тесте менее 70% правильных ответов
	Уметь - приобретать и использовать новую информацию в своей предметной области, предлагать новые идеи и подходы к решению инженерных задач	Решение стандартных практически х задач	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
	Владеть - новой информацией в своей предметной области, предлагать новые идеи и подходы к решению инженерных задач	Решение прикладных задач в конкретной предметной области	Задачи решены в полном объеме и получены верные ответы	Продемонст р ирован верный ход решения всех, но не получен верный ответ во всех задачах	Продемонстр ирован верный ход решения в большинстве задач	Задачи не решены
ОПК-4	Знать - специализированное программно-математическ ое обеспечение для проведения исследований и решения инженерных задач		Выполнени е теста на 90- 100%	Выполнение теста на 80- 90%	Выполнение теста на 70-80%	В тесте менее 70% правильных ответов
	Уметь - разрабатывать и применять специализированное	Решение стандартных практически	Задачи решены в полном	Продемонст р ирован верный ход	Продемонстр ирован верный ход	Задачи не решены

программно-математическ	х задач	объеме и	решения	решения в	
ое обеспечение для		получены	всех, но не	большинстве	
проведения исследований и		верные	получен	задач	
решения инженерных задач		ответы	верный		
			ответ во		
			всех задачах		
Владеть - разрабатывать и	Решение	Задачи	Продемонст	Продемонстр	Задачи не
применять	прикладных	решены в	р ирован	ирован	решены
специализированное	задач в	полном	верный ход	верный ход	
программно-математическ	конкретной	объеме и	решения	решения в	
ое обеспечение для	предметной	получены	всех, но не	большинстве	
проведения исследований и	области	верные	получен	задач	
решения инженерных задач		ответы	верный		
			ответ во		
			всех задачах		

- 7.2 Примерный перечень оценочных средств (типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности)
 - 7.2.1 Примерный перечень заданий для подготовки к тестированию
 - 1. Достоинствами ключевого режима работы УМ являются:
 - А.Большой коэффициент усиления. Б.Высокий КПД.
 - В.Малый уровень рассеиваемой на транзисторе мощности.
 - Г. Низкий уровень нелинейных искажений.
 - Д.Малые коммутационные потери на высоких частотах.
 - 2. Достоинством варакторных умножителем частоты является:
 - А. Эффективная работа в диапазоне СВЧ и выше.
 - Б.Эффективная работа на относительно низких частотах (диапазон ВЧ).
 - В.Большая широкополосность (октава и более).
 - Г.Низкий КПД.
 - Д.Наличие избирательных контуров.
 - 3. Каковы достоинства генераторов, выполненных на ПАВ резонаторах:
 - А. Широкий диапазон перестройки по частоте.
 - Б.Низкий уровень фазовых шумов.
 - В.Высокая чистота спектра выходного сигнала.
 - Г.Низкая стабильность частоты.
 - Д.Склонность к самовозбуждению.
- 4. Какой из функциональных элементов цифрового СЧ вычислительного типа, как правило, выполняется на микроконтроллере:
 - А. Фильтр нижних частот. Б. Цифро-аналоговый преобразователь.
 - В.Блок памяти. Г.Блок установки частота. Д.Опорный генератор.
- 5. Какой из указанных видов дискретной модуляции является наиболее помехозащищенным :
 - А.АМ. Б.ЧМ. В.ФМ. Г.ДЧТ.

6.Какой из указанных ниже видом дискретной модуляции является наиболее узкополосным:

А.АМ. Б.ФМ. В.ЧМ. Г.ОФМ.

- 7. Какой из методов формирования однополосного сигнала позволяет сформировать наиболее просто ОМ сигнал с малым уровнем нелинейных искажений:
 - А.Фазокомпенсационный. Б.Фильтровой. В.Фазо-фильтровой. Г.Цифровой.
 - 8. Какие недостатки усилителей мощности однополосного сигнала.
 - А.Высокий КПД. Б.Низкий уровень нелинейных искажений.
 - В.Сложность схемной реализации. Г.Широкая полоса рабочих частот.
 - Д.Низкий КПД.
- 9. Какой из названных ниже видов нежелательных колебаний сложно (практически невозможно) отфильтровать:
 - А.Гармоники несущей частоты.
- Б. Субгармоники несущей, возникающие при ее формировании. В.Нежелательные колебания, возникающие при формировании радиосигнала в полосе формируемого радиосигнала или около нее.
 - Г.Гармоники, возникающие в тракте звуковых частот.
- 10. Каким образом можно уменьшить уровень шумового излучения на выходе РПДУ:
 - А.С помощью узкополосного полосового фильтра.
 - Б.Использовать ненапряженный режим работы АЭ (транзисторов).
- В.Использовать формирователь радиосигнала с низким уровнем шумового излучения.
- Г.Реализовать формирователь радиосигнала на повышенном уровне мощности (приблизительно около 1 Ватт).

7.2.2.Примерный перечень заданий для решения стандартных задач

- 1.Ключевой режим работы характеризуется следующими состояниями р-п переходов транзистора:
 - А.база-эмиттер закрыт, база-коллектор открыт;
 - Б.база-эмиттер открыт, база-коллектор закрыт;
 - В.база-эмиттер открыт, база-коллектор открыт;
 - Г.база-эмиттер закрыт, база-коллектор закрыт.
- 2.Чему равен максимальный КПД ключевого УМ. Если напряжение насыщения транзистора равно 0.25 B, а напряжение питания E_n = 20 B:

3. Коммутационные потери в ключевом УМ возникают на высоких частотах за счет накопления:

А.магнитной энергии в паразитной емкости АЭ;

Б.магнитной энергии в паразитной индуктивности АЭ;

В.магнитной энергии в фильтрах согласующих цепей;

Г.электрической энергии в паразитной емкости АЭ;

Д.магнитной энергии в паразитной емкости.

4. Чему равна генерируемая частота одноконтурного ПАВ-генератора, если паспортная частота ПАВ-резонатора составляет 300 МГц:

А.250 МГц; Б.300 МГц; В.303 МГц; Г.400 МГц.

5. Чему равна выходная частота однокольцевого синтезатора частоты, если частота опорного генератора равна 5 МГц, а коэффициенты деления частоты делителей с фиксированным коэффициентом деления и с переменным коэффициентом деления равны соответственно 200 и 500:

 $A.5 M \Gamma u; \quad B.20 M \Gamma u; \quad B.12.5 M \Gamma u; \quad \Gamma.50 M \Gamma u.$

6. Какой тип формирователя ОМ сигнала наиболее просто обеспечивает подавление побочных колебаний на 40 дБ:

А.диодный балансный; Б.диодный кольцевой;

В.транзисторный балансный; Г.цифровой.

7.Укажите выражение с помощью которого определяется КПД усилителя мощности ОМ сигнала:

 $A.\acute{\eta}_1{=}0.5{\cdot}\alpha_1(\theta)/\alpha_0(\theta); \quad \ \ \, \text{E.} \; \alpha_1(\theta)/\alpha_0(\theta);$

B. $\gamma_1(\theta)/\gamma_0(\theta)$; Γ . 0.5 $\gamma_1(\theta)/\gamma_0(\theta)$.

 $\alpha_{n}(\theta),\,\gamma_{n}(\theta)$ -коэффициенты разложения.

8.Укажите вид функции по которой более точно изменяется огибающие спектра периодической последовательности прямоугольных импульсов:

A.A/F; $B.A/F^2$; B.A; $\Gamma.A\cdot F$.

A=const, F-частота.

9.Каким методом цифрового формирования ОМ сигнала можно реализовать наименьший уровень побочных колебаний:

А.фильтровым; Б.фазокомпенсационным;

В.фазофильтровым; Г.путем цифрового усиления.

10.Как изменится уровень шумов на выходе передатчика, в котором несущая частота формируется путем умножения опорной частоты:

А.уменьшается в N раз; Б.остается неизменным;

В.увеличивается в N раз; Γ .увеличивается в N^2 раз.

7.2.3.Примерный перечень заданий для решения прикладных задач

1Чему равен предельный (максимальный) КПД варакторного умножителя частоты?

А.50%. Б.75%. В.100%. Г.30%.

2. Чем ограничена верхняя рабочая частота ПАВ генераторов?

А.Большими габаритами. Б.Большими потерями в материале.

- В.Сложностью схемной реализации. Г.Влиянием побочных гармоник.
- 3. Чем ограничена верхняя рабочая частота синтезаторов частоты вычислительного типа?
 - А.Разрядностью используемых ЦАП.
 - Б.Возможностью реализации блока памяти с большой емкостью.
 - В.Появлением нелинейных искажений.
 - Г. Увеличением потерь в материале.
 - 4. Укажите недостатки радиосигналов с фазовой манипуляцией:
 - А. Широкая полоса спектра частот. Б. Низкая помехозащищенность.
 - В.Сложность различения сигналов «0» и «1».
 - Г.Сложность реализации фазового модулятора.
- 5.Укажите методы сужения спектра радиосигналов с фазовой манипуляцией:
 - А.Скругление формы импульсов. Б.Умножение частоты.
 - В.Использование многоуровневых методов манипуляции.
 - Г.Осуществление модуляции на низких частотах.
- 6. Какой уровень побочных колебаний на выходе диодного формирователя ОМ сигнала соответствует современным требованиям ГОСТ:

А.-60 дБ; Б.-20дБ; В.-40дБ; Г.-50 дБ.

7. Чему равно максимальное значение КПД двухтактного усилителя ОМ сигнала, работающего с углом отсечки θ = 90^{0} :

8. Чему равна полоса частот, занимаемая спектром дискретного АМн сигнала прямоугольной формы с частотой повторения F=200 В (Бод):

 $A.10 \ \kappa \Gamma$ ц; $B.6 \ \kappa \Gamma$ ц; $\Gamma.50 \ \kappa \Gamma$ ц.

9.Спектральные составляющие внешней помехи каких частот могут нарушить режим работы передатчика если его несущая частота $f_{\rm H}=100~{\rm M}\Gamma$ ц: А. 200 МГц; Б.300 МГц; В.50 МГц; Д. 90 МГц.

7.2.4 Примерный перечень вопросов для подготовки к зачету с оценкой

- 1. Ключевой режим работы АЭ. Энергетические соотношения в ключевом режиме.
- 2. Коммутационные потери, причины их возникновения и методы уменьшения.
- 3. Особенности усиления ВЧ колебаний в ключевом режиме и реализация ключевого усилителя.
- 4. Одноконтурный LC- автогенератор с использованием дополнительного конденсатора. Принципиальная схема, условия возбуждения, основы расчета и основные характеристики.
- 5. Принцип возбуждения поверхностных акустических волн.
- 6. Принципиальная схема одноконтурного автогенераторы с использованием ПАВ резонатора , особенности ее работы и основные характеристики.
- 7. Цифровой СЧ построенный по методу прямого синтеза.
- 8. Цифровой СЧ, построенный на основе кольца ФАП Режимы работы и основные характеристики.
- 9. Генератор управляемый напряжением. Диапазонная перестройка частоты и ее реализация.
- 10.Однополосная модуляция и ее особенности. Уравнение ОМ сигнала и методы формирования ОМ.
- 11.Схема возбудителя ОМ сигнала, построенного по фильтровому методу.
- 12. Формирователь ОМ сигнала, построенный по фазо-компенсационному методу.
- 13.Схема балансного модулятора. Принцип работы БМ и спектр выходного сигнала.
- 14. Цифровое формирование ОМ сигнала, структурная схема цифрового формирователя ОМ сигнала и принцип ее работы.
- 15.Особенности режима работы УМ однополосного сигнала. Двхтоновый метод оценки нелинейных искажений усилителя мощности ОМ сигнала.
- 16.Структурная схема УМ, построенного по методу раздельного усиления и принцип ее работы.
- 17. Принцип формирования амплитудно-манипулированного сигнала и его схемная реализация. Спектр $AM_{\rm H}$ сигнала и его особенности.
- 18. Принцип формирования частотно-модулированного сигнала и его

схемная реализация. Спектр ЧМ_н сигнала и его особенности.

- 19. Принцип формирования фазоманипулированного сигнала и его схемная реализация. Спектр $\Phi M_{\scriptscriptstyle H}$ сигнала.
- 20. Принцип цифрового формирования ОФМ сигнала и его реализация.
- 21. Основные виды побочных излучений радиопередатчика, причины их возникновения.
- 22. Интермодуляционное излучение радиопередатчика. Методы борьбы с этими видом излучений.
- 23. Паразитное излучение передатчика. Причины их возникновения и методы борьбы.
- 24. Шумовые излучения передатчиков.

7.2.3 Паспорт оценочных материалов

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции	Наименование оценочного средства
1	Повышение эффективности ключевых усилителей мощности и варакторных умножителей частоты	ОПК-2, ОПК-3, ОПК-4	Устный опрос, зачет с оценкой
2	Цифровые синтезаторы частоты и с использованием поверхностных акустических волн	ОПК-2, ОПК-3, ОПК-4	Устный опрос, зачет с оценкой
3	Спектрально эффективные виды модуляции. Однополосная модуляция	ОПК-2, ОПК-3, ОПК-4	Устный опрос, зачет с оценкой
4	Дискретные виды модуляции. Особенности формирования цифровых сигналов.	ОПК-2, ОПК-3, ОПК-4	Устный опрос, зачет с оценкой
5	Побочные, внеполосные, интермодуляционные и шумовые излучения радиопередающих устройств.	ОПК-2, ОПК-3, ОПК-4	Устный опрос, зачет с оценкой
6	Шумовое и паразитное излучения РПДУ.	ОПК-2, ОПК-3, ОПК-4	Устный опрос, зачет с оценкой

7.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности

При преподавании дисциплины Б1.В.19 «Устройства генерирования и формирования сигналов» в качестве формы оценки знаний студентов используются индивидуальные варианты заданий на лабораторные занятия, а

также задания на зачет с оценкой на бумажном носителе.

<u>Задания к зачету с оценкой</u> включают два теоретических вопроса и одну расчетную задачу малой/средней сложности, относящихся к области знаний, определяемой перечнем вопросов к зачету с оценкой (см. п. 7.2.4).

При проведении зачета с оценкой разрешается использование:

- конспектов лекций;
- учебной литературы в бумажной форме;
- настольных микрокалькуляторов;
- приложения «Инженерный калькулятор» на ПЭВМ (при проведении зачета в аудитории, содержащей вычислительную технику)

Использование мобильных телефонов, планшетов, ноутбуков и/или иных устройств, предоставляющих беспроводную связь, не допускается.

Время подготовки к ответу по заданию составляет 20...30 мин. Затем осуществляется проверка уровня подготовки в ходе устной беседы с экзаменатором, на которую отводится до 15 минут, и выставляется оценка в соответствии с требованиями из п. 7.1.2

При проведении зачета с оценкой разрешается использование:

- настольных микрокалькуляторов;
- приложения «Инженерный калькулятор» на ПЭВМ (при проведении зачета в аудитории, содержащей вычислительную технику)

Использование конспектов лекций или учебной литературы в любой форме, а также мобильных телефонов, планшетов, ноутбуков и/или иных устройств, предоставляющих беспроводную связь, не допускается.

Время подготовки к ответу по заданию составляет 35 мин. Затем осуществляется проверка уровня подготовки в ходе устной беседы с экзаменатором, на которую отводится до 15 минут, и выставляется оценка в соответствии с требованиями из п. 7.1.2.

8 УЧЕБНО МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ)

8.1 Перечень учебной литературы, необходимой для освоения лиспиплины

~	, 21111, 211111, 221			
No	Тип	Наименование	Кол-во	Книгооб
П.П.	носителя			еспеч.
1	печ	Радиопередающие устройства. Под ред.В.В.	27 0,5	
		Шахгильдяна. М.Радио и связь, 2003 560 с.		
2	эл	Бочаров М.И. Устройства генерирования и		
		формирования сигналов. Дискретные виды	ноогр	1
		модуляции. 2014. – 1 электрон.опт.дист	неогр	1
		(CD-ROM).		
3	печ	Бочаров М.И. Построение и расчет схем 29		0.5
		енераторов, ВГТУ, 2007 184 с.	0,5	
4	ЭЛ	Бочаров М.И. Устройства генерирования и		
		формирования сигналов. Основы теории и		
		расчета генераторов с внешним возбуждением,	неогр	1
		ВГТУ [электронный ресурс], 2017. – 1		
		электрон.опт.диск (CD-ROM).		

5	печ	Проектирование радиопередатчиков; под ред. В.В. Шахгильдяна, М.: Радио и связь, 2000 653 с.	23	0,5
6	печ	Генераторы с внешним возбуждением и автогенераторы : Методические указания для практических занятий по дисциплинам "Устройства генерирования и формирования сигналов" направления 210400.68 "Радиотехника" и специальности 210601.65 "Радиоэлектронные системы и комплексы", "Устройства передачи и приема сигналов СПЦС" специальности 090302.65 "Информационная безопасность ТКС" и дисциплине "Радиопередающие устройства" направления 210400.62 "Радиотехника" очной и заочной форм обучения / Каф. систем информационной безопасности; Сост. М. И. Бочаров Воронеж : ФГБОУ ВПО "Воронежский государственный технический университет", 2013 50 с 00-00; 104 экз.	100	0,5
7	эл	Бочаров М.И. Методические указания к выполнению лабораторной работы «Моделирование варакторных умножителей частоты». 2016 1 электрон.опт.дист (CD-ROM).	неогр	1
8	эл	Бочаров М.И. Формирование радиосигналов. Методические указания к выполнению лабораторной работы «Исследование электрических характеристик передатчика с аналоговыми и дискретными видами модуляции» Воронеж, ВГТУ, 2016 1 электрон. опт.дист (CD-ROM).	неогр	1

8.2 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, ресурсов информационно-телекоммуникационной сети «Интернет», современных профессиональных баз данных и информационных справочных систем:

При проведении лабораторных и практических работ используется следующее информационное обеспечение:

- 1.Научная электронная библиотека e-library, https://elibrary.ru/defaultx.asp.
 - 2.Информационный портал http://caxapa.ru/.
- 3.Справочный сайт по транзисторам http://www.texnic.ru/data/vt/index.htm.
- 4.Справочный сайт по ПАВ-резонаторам http://www.aec-design.com/RU/resru.htm.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА

Учебная лаборатория: для изучения дисциплины имеется лаборатория со специализированными лабораторными стендами и измерительной аппаратурой: вольтметры, генераторы, осциллографы, частотомеры, измерители модуляции, анализаторы спектра

1. Исследование автогенератора с емкостной обратной связью.

Используемое оборудование: лабораторные установки, высокочастотные вольтметры, осциллографы, частотомеры.

2. Исследование основных свойств и метода стабилизации частоты с помощью фазовой автоподстройки.

Используемое оборудование: лабораторная установка, вольтомметры, частотомеры, осциллографы.

3. Управление частотой в автогенераторах с помощью варикапов.

Используемое оборудование: лабораторная установка, измеритель модуляции, генератор сигналов низкочастотный, частотомер, осциллограф.

4. Исследование электрических характеристик передатчика с аналоговыми и дискретными видами модуляции.

Используемое оборудование: лабораторные установки (р/с «Маяк»), измерители модуляции, генераторы сигналов низкочастотные, вольтметры, частотомеры, эквиваленты нагрузки.

При наличии среди обучающихся студентов-инвалидов и лиц с OB3 особенности изучения ими дисциплины согласуются с преподавателями в индивидуальном порядке.

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

По дисциплине «Устройства генерирования и формирования сигналов» Основой изучения дисциплины являются лекции, на которых излагаются наиболее существенные и трудные вопросы, а также вопросы, не нашедшие отражения в учебной литературе.

Лабораторные работы выполняются на лабораторном оборудовании в соответствии с методиками, приведенными в указаниях к выполнению работ.

Вид учебных занятий	Деятельность студента		
	Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения; помечать важные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь. Обозначение вопросов, терминов, материала,		

	которые вызывают трудности, поиск ответов в рекомендуемой		
	литературе. Если самостоятельно не удается разобраться в		
	материале, необходимо сформулировать вопрос и задать		
	преподавателю на лекции или на практическом занятии.		
Лабораторная работа	Лабораторные работы позволяют научиться применять		
	теоретические знания, полученные на лекции при решении		
	конкретных задач. Чтобы наиболее рационально и полно		
	использовать все возможности лабораторных для подготовки к ним		
	необходимо: следует разобрать лекцию по соответствующей теме,		
	ознакомится с соответствующим разделом учебника, проработать		
	дополнительную литературу и источники, решить задачи и		
	выполнить другие письменные задания.		
Самостоятельная	Самостоятельная работа студентов способствует глубокому		
работа	усвоения учебного материала и развитию навыков		
	самообразования. Самостоятельная работа предполагает		
	следующие составляющие:		
	- работа с текстами: учебниками, справочниками, дополнительной		
	литературой, а также проработка конспектов лекций;		
	- выполнение домашних заданий и расчетов;		
	- работа над темами для самостоятельного изучения;		
	- участие в работе студенческих научных конференций, олимпиад;		
	- подготовка к промежуточной аттестации.		
Подготовка к	Готовиться к промежуточной аттестации следует систематически, в		
промежуточной			
аттестации	не позднее, чем за месяц-полтора до промежуточной аттестации.		
	Данные перед зачетом с оценкой три дня эффективнее всего		
	использовать для повторения и систематизации материала.		
	, ,		

Лист регистрации изменений

№ п/п	Перечень вносимых изменений	Дата внесения изменений	Подпись заведующего кафедрой, ответственной за реализацию ОПОП
1	Актуализирован раздел 8.1 в части состава учебной литературы, необходимой для освоения дисциплины. Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем.	31.08.2019	Jefan beeb
2	Актуализирован раздел 8.1 в части состава учебной литературы, необходимой для освоения дисциплины. Актуализирован раздел 8.2 в части состава используемого лицензионного программного обеспечения, современных профессиональных баз данных и справочных информационных систем.	31.08.2020	Defambeeb