МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГТУ», ВГТУ)

Система менеджмента качества

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ
НА БАЗЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ
ПО ПРОГРАММАМ БАКАЛАВРИАТА

«ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ И ОБОРУДОВАНИЕ»

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ НА БАЗЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ БАКАЛАВРИАТА И ПРОГРАММАМ СПЕЦИАЛИТЕТА «Энергетические установки и оборудование»

Программа составлена на основе ФГОС СПО по направлениям 15.02.08 «Технология машиностроения», 08.02.01 «Строительство и эксплуатация зданий и сооружений», 08.02.08 «Монтаж и эксплуатация оборудования и систем газоснабжения», 11.02.16 «Монтаж, техническое обслуживание и ремонт электронных приборов и устройств», 15.02.13 «Техническое обслуживание и ремонт систем вентиляции и кондиционирования», 15.02.14 «Оснащение средствами автоматизации технологических процессов и производств».

I. Перечень элементов содержания, проверяемых на вступительном испытании

Раздел 1. «Циклы энергетических установок»

- 1. Паровой цикл Карно.
- 2. Цикл Ренкина, пути повышения экономичности.
- 3. Теплофикационные циклы.
- 4. Циклы двигателей внутреннего сгорания.
- 5. Циклы газотурбинных установок.
- 6. Парогазовые циклы.
- 7. Циклы атомных электрических станций.
- 8. Циклы компрессорных машин.

Раздел 2. «Паровые котлы теплоэлектростанций»

- 1. Паровые котлы теплоэлектростанций. Основные определения и классификация.
- 2. Классификация энергетических котлов. Условные обозначения. Типы компоновок.
- 3. Устройство котлов с естественной циркуляцией.
- 4. Прямоточные котлоагрегаты.
- 5. Котлоагрегаты, работающие под наддувом. Компоновка котлоагрегатов.
- 6. Топки котлоагрегатов.
- 7. Барабаны, устройства для сепарации пара от влаги, ступенчатое испарение.
- 8. Экраны котлоагрегатов.
- 9. Пароперегреватели, регулирование температуры пара.
- 10. Водяные экономайзеры.
- 11. Воздухоподогреватели.
- 12. Каркасы теплогенераторов.
- 13. Обмуровка. Гарнитура. Арматура.
- 14. Устройства для наружной очистки от поверхности нагрева.
- 15. Тепловой баланс котлоагрегата.

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ НА БАЗЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ БАКАЛАВРИАТА И ПРОГРАММАМ СПЕЦИАЛИТЕТА «Энергетические установки и оборудование»

- 1. Классификация паровых турбин. Обозначение.
- 2. Турбины с противодавлением.
- 3. Турбины с промежуточным регулируемым отбором пара.
- 4. Турбины с противодавлением и регулируемым отбором пара.
- 5. Турбины с двумя регулируемыми отборами пара.
- 6. Турбины с двумя отопительными отборами пара.
- 7. Применение встроенных пучков в конденсаторах паровых турбин.
- 8. Газовые турбины и их особенности.

Раздел 4. «Вспомогательное оборудование»

- 1. Подогреватели.
- 2. Испарители.
- 3. Деаэрационные установки.
- 4. Насосное и компрессорное оборудование.
- 5. Система технического водоснабжения.
- 6. Градирни.
- 7. Тягодутьевые устройства.

II. Требования к уровню подготовки поступающего

Поступающий должен:

Знать:

- основные циклы выработки энергии;
- номенклатуру основного и вспомогательного оборудования тепловых электростанций;
- принципы работы энергетического оборудования.

Уметь:

- рассчитывать экономичность циклов, энергетические показатели, характеристики основного и вспомогательного оборудования энергетических установок.

III. Критерии оценивания работ поступающих

Вступительное испытание проходит в виде тестирования. Результаты оцениваются по 100-балльной шкале.

Каждый билет содержит 14 заданий. Вопросы делятся по категориям сложности: 10 вопросов категории A (оцениваются по 5 баллов каждый), 3 вопроса категории B (оцениваются по 10 баллов каждый) и 1 задача категории C (расчетная задача — оценивается в 20 баллов). Суммарная оценка не превышает 100 баллов.

Продолжительность вступительного испытания – 60 минут.

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ НА БАЗЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ БАКАЛАВРИАТА И ПРОГРАММАМ СПЕЦИАЛИТЕТА «Энергетические установки и оборудование»

IV. Примеры тестовых заданий

Задания категории А

- 1. Конденсатор паровой турбины это теплообменный аппарат, предназначенный для конденсации отработавшего пара в турбине при давлении:
 - а) произвольном
 - б) низком
 - в) высоком
 - г) среднем
- 2. Турбина типа Т
 - а) теплофикационная с производственным отбором
 - б) теплофикационная с отопительным отбором и противодавлением
 - в) теплофикационная с отопительным отбором
 - г) с противодавлением

Задания категории В

- 1. Котел Е-500-13,8-560 ГМН предназначен для сжигания:
 - а) антрацита
 - б) бурого угля
 - в) малосернистого мазута
 - <mark>г) газа</mark>
- 2. Прямоточный котел Пп-2650-25-545/542 ГМН предназначен для работы с турбиной мощностью:
 - a) 800 МВт
 - б) 500 МВт
 - в) 600 MBт
 - г) 25 МВт

Задания категории С

1. Номинальная мощность турбины $N=10 {\rm MBT}$, значение энтальпии пара на входе в турбину $i_1=3380 {\rm кДж/кг}$. Теоретическое значение энтальпии пара $i_{2m}=2020 {\rm кДж/кг}$. Определить расход пара на турбину D т/ч с учетом реальных параметров после расширения пара в турбине, если ее внутренний относительный кпд $\eta_{oi}=0.92$.

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ НА БАЗЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ БАКАЛАВРИАТА И ПРОГРАММАМ СПЕЦИАЛИТЕТА «Энергетические установки и оборудование»

Решение

Из выражения внутреннего относительного кпд турбины

$$\eta_{oi} = \frac{i_1 - i_{2\partial}}{i_1 - i_{2m}}$$

определяем значение энтальпии пара в реальном процессе

$$i_{2\partial} = i_1 - \eta_{oi} (i_1 - i_{2m}) = 3380 - 0.92 (3380 - 2020) = 2128.8$$
 кДж/кг.

Определяем расход пара на турбину по формуле:

$$D = \frac{3600}{i_1 - i_{20}} N = \frac{3600}{3380 - 2128,8} 10000 = 28772,38 \text{ KG/H} = 28,772 \text{ T/H}.$$

Ответ: D = 28,772 т/ч.

V. Рекомендуемая литература

- 1. Меняев К. В. Тепловые электрические станции: Учебное пособие / Алт. гос. техн. ун-т им. И.И. Ползунова.- Барнаул: Изд-во АлтГТУ, 2014.- 121 с.
- 2. Турбины тепловых и атомных электрических станций: Учебник для вузов. 2-е изд., перераб. и доп. / Под ред. А.Г. Костюка, В.В. Фролова. М.: Издательство МЭИ, 2001. 488c.
- 3. Баженов, М.И. Сборник задач по курсу «Промышленные тепловые электростанции»: Учеб. пособие для вузов /М.И. Баженов, А.С. Богородский. М.: Энергоатомиздат, 1990. 128с.
- 4. Курносов, А.Т. Техническая термодинамика: учеб. пособие / А.Т. Курносов, Д.Н. Китаев.; Воронеж. гос. арх.-строит. ун-т. Воронеж, 2007. 110 с.
- 5. Зысин Л. В. Парогазовые и газотурбинные тепловые электростанции: учеб. пособие. СПб. : Изд.-во Политехн. ун-та, 2010. 368 с.
- 6. Быстрицкий, Г.Ф. Основы энергетики / Г.Ф. Быстрицкий.- М.: ИНФРА-М, 2005. 278с.
- 7. Щепетильников, М.И. Сборник задач по курсу ТЭС/ М.И. Щепетильников, В.И. Хлопушин. М.: Энергоатомиздат, 1983. 176с.
- 8. Бойко, Е.А. Котельные установки и парогенераторы (конструкционные характеристики энергетических котельных агрегатов) / Е.А. Бойко, А.А. Шпиков. КГТУ. Красноярск, 2003. 230с.