try

Бухольцев Иван Михайлович

УПРАВЛЕНИЕ ПРОЦЕССОМ РАЗВИТИЯ СЛОЖНОСТРУКТУРИРОВАННЫХ ОРГАНИЗАЦИОННЫХ СИСТЕМ НА ОСНОВЕ ОПТИМИЗАЦИОННЫХ МОДЕЛЕЙ РАСПРЕДЕЛЕНИЯ ИНВЕСТИЦИОННЫХ РЕСУРСОВ

Специальность: 2.3.4. Управление в организационных системах

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в АНОО ВО «Воронежский институт высоких технологий».

Научный руководитель: Рындин Никита Александрович, доктор

технических наук, доцент

Официальные оппоненты: Буркова Ирина Владимировна, доктор

технических наук, доцент, ФГБУН «Институт проблем управления имени В.А. Трапезникова Российской Академии Наук», ведущий научный

сотрудник лаборатории № 57, г. Москва

Сумин Виктор Иванович, доктор технических наук, профессор, ФГБОУ ВО «Воронежский государственный лесотехнический университет имени Г.Ф. Морозова», профессор кафедры «Вычислительной техники и информационных систем», г. Воронеж

Ведущая организация: ФГАОУ ВО "Южный федеральный

университет», г. Ростов-на-Дону

Защита состоится «26» декабря 2025 года в 14:00 на заседании диссертационного совета 24.2.286.04, созданного на базе ФГБОУ ВО «Воронежский государственный технический университет», по адресу: г. Воронеж, Московский проспект, д. 14, ауд. 216.

С диссертацией можно ознакомиться в научно-технической библиотеке и на сайте ФГБОУ ВО «Воронежский государственный технический университет» https://cchgeu.ru

Автореферат разослан «31» октября 2025 г.

Ученый секретарь диссертационного совета Z

Гусев Константин Юрьевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. На современном этапе управление развитием организационных систем осуществляется с использованием программноцелевого подхода. На его основе процесс принятия управленческих решений направлен на формирование программы развития организационных систем разной сложности: автономных, сетевых, отраслевых, региональных. Большинство из них являются сложноструктурированными, базирующимися на взаимодействии управляющего центра и отдельных объектов. При этом главное внимание уделяется распределению инвестиционного ресурса между объектами системы с учетом интегрального объема инвестиций и уровня показателей эффективности развития, определяемых управляющим центром.

С целью повышения эффективности программно-целевого подхода разработан моделирования ряд методов И оптимизации процесса распределения инвестиций при формировании программы развития сложноструктурированной организационной системы, нашедших отражение в работах отечественных ученых Д. И. Батищева, С. А. Баркалова, А. М. Бершадского, В. Н. Буркова, Я. Е. Львовича, Д. А. Новикова, М. Х. Прилуцкого, Ю С. Сахарова, Т. Е. Смоленцевой, Т. А. Угольницкого, А. В. Щепкина, М. В. Щербакова.

Однако, в этих работах не учитывается ряд особенностей управления развитием сложноструктурированных организационных систем на основе программно-целевого подхода:

- 1. Системные связи процессов формирования и реализации программы развития при балансировке и ребалансировке инвестиций;
- 2. Необходимость интеграции оптимизационного и прогностического моделирования на основе результатов мониторинга и экспертного оценивания для повышения эффективности принимаемых управленческих решений;
- 3. Роль балансовых условий в построении единой системы принятия управленческих решений с использованием оптимизационного и прогностического моделирования.

актуальность Таким образом, темы диссертации определяется необходимостью разработки моделей И алгоритмов оптимизации инвестирования объектов сложноструктурированных организационных учитывающих особенности балансировки и ребалансировки инвестиций при формировании и реализации программы развития с заданным горизонтом планирования.

Тематика диссертационной работы соответствует научному направлению АНОО ВО «Воронежский институт высоких технологий» «Управление в организационных системах».

Целью работы является повышение эффективности управления инвестированием сложноструктурированных организационных систем с использованием оптимизационного и прогностического моделирования для принятия управленческих решений при формировании и реализации программы развития.

Задачи исследования. Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Проанализировать пути повышения эффективности управления сложноструктурированными организационными системами в рамках программы развития и сформировать структуру системы принятия управленческих решений при ее формировании и реализации;
- 2. Разработать оптимизационные и прогностические модели и алгоритмы принятия управленческих решений по балансировке инвестиций при формировании программы развития сложноструктурированных организационных систем;
- 3. Разработать оптимизационные и прогностические модели и алгоритмы принятия управленческих решений по ребалансировке инвестиций при реализации программы развития сложноструктурированных организационных систем;
- 4. Оценить эффективность применения разработанных моделей, алгоритмов и программных средств в практике управления инвестированием программы развития региональной организационной системы аграрного профиля.

Объект исследования: процесс управления инвестированием сложноструктурированных организационных систем на основе программы развития.

Предмет исследования: модели и алгоритмы принятия управленческих решений при формировании и реализации программы развития.

Методы исследования. Для решения поставленных задач использовались основные положения теории управления в организационных системах, исследования операций, дискретной и многокритериальной оптимизации, прогностического моделирования и экспертного оценивания.

Тематика работы соответствует следующим пунктам паспорта специальности 2.3.4 «Управление в организационных системах»: п.2 «Разработка математических моделей и критериев эффективности, качества и надёжности организационных систем»; п.4 «Разработка информационного и программного обеспечения систем управления и механизмов принятия решений в организационных системах»; п.5 «Разработка методов получения данных и идентификации моделей, прогнозирования и управления организационными системами на основе ретроспективной, текущей и экспертной информации».

Научная новизна работы. В диссертации получены следующие результаты, характеризующиеся научной новизной:

- 1. Структура процесса управления формированием и реализацией программы развития сложноструктурированной организационной системой, отличающаяся интеграцией экспертного решения с результатами прогностического моделирования и оптимизации процессов балансировки и ребалансировки инвестиций и обеспечивающая выполнение требований управляющего центра к показателям эффективности деятельности объектов;
- 2. Оптимизационные модели и алгоритмы принятия управленческих решений при формировании программы развития сложноструктурированной организационной системы, отличающиеся видом зависимостей экстремальных и граничных от оптимизируемых переменных и их учетом при поиске эффективного распределения инвестиций между объектами и временными периодами и обеспечивающие выполнение балансовых условий;
- 3. Модель и алгоритм принятия управленческого решения при ребалансировке инвестиций по направлениям программы развития, отличающиеся формой использования сравнительного анализа ранговых рядов объемов упущенной выгоды в процессе оптимизации и обеспечивающие включение новых объектов для дополнительного инвестирования;
- Оптимизационные модели и алгоритмы принятия управленческих решений при ребалансировке объемов инвестиций ДЛЯ объектов организационной системы и их распределения между временными периодами, отличающиеся этапностью использования прогностического моделирования в многокритериального И многовариантного выбора восстановление балансовых обеспечивающие выполнения условий достижение заданного уровня показателей эффективности.

Теоретическая значимость исследования заключается в развитии моделей и алгоритмов принятия управленческих решений по распределению ресурсного обеспечения в организационных системах за счет их проблемной ориентации на процессы балансировки и ребалансировки инвестиций при формировании и реализации программы развития.

Практическая значимость исследования заключается в:

- 1. Возможности применения разработанной структуры процесса управления сложноструктурированной организационной системой с учетом этапности принятия управленческих решений на основе оптимизационных и прогностических моделей;
- 2. Использовании разработанных оптимизационных моделей и алгоритмов инвестирования при реализации программы развития сложноструктурированной региональной организационной системы аграрного профиля;

3. Применении разработанных программных средств, сопряженных с информационной системой мониторинга реализации программы развития, в практике управления инвестированием организационных систем.

Положения, выносимые на защиту

- 1. Структура процесса управления формированием и реализацией программы развития сложноструктурированной организационной системы позволяют интегрировать экспертные решения с результатами прогностического моделирования и оптимизации использования инвестиций для выполнения требований управляющего центра к эффективности деятельности объектов
- 2. Оптимизационные модели и алгоритмы принятия управленческих решений при формировании программы развития сложноструктурированной организационной системы позволяют обеспечить выполнение балансовых условий за счет их учета при формализации экстремальных и граничных требований и поиске эффективного распределения инвестиций
- 3. Модель и алгоритм принятия управленческого решения при ребалансировке инвестиций по направлениям программы развития позволяет оптимизировать множество объектов для дополнительного инвестирования на основе сравнительного анализа ранговых рядов объемов упущенной выгоды
- Оптимизационные модели и алгоритмы принятия управленческих ребалансировке объемов инвестиций решений при ДЛЯ объектов организационной системы и их распределения между временными периодами позволяют восстановить выполнение балансовых условий и достигнуть показателей эффективности заданного уровня многокритериального и многовариантного выбора с учетом результатов прогностического моделирования.

Результаты внедрения.

Основные результаты работы Основные результаты внедрены в ООО «Центр информационных технологий» (г. Воронеж) для оптимизации распределения бюджета на сопровождение и развитие предприятий агропромышленного профиля, в ООО «Логус-агро» (г. Воронеж) для повышения эффективности распределения ресурсов, в учебный процесс Воронежского института высоких технологий в рамках дисциплин «Теория оптимизации и принятия решений в автоматизированных системах» и «Технологии инноваций».

Разработанная информационная система по распределению инвестиционных средств в организационных системах используется в качестве учебной Web-ориентированной системы для научно-исследовательской и проектной деятельности студентов этого направления.

Апробация работы.

Основные положения диссертационной работы докладывались и обсуждались на следующих конференциях: VII Международной НПК «Наука и технологии: перспективы развития и применения» (Петрозаводск, 2024); VI Всероссийской НПК «Информационные технологии в экономике и управлении» (Махачкала, 2024); XXX International Open Science Conference «Modern informatization problems in the technological and telecommunication sys tems analysis and synthesis» (Yelm, WA, USA, 2025), а также на научных конференциях ВИВТ (2019-2025 гг.).

Публикации. По результатам диссертационного исследования опубликовано 11 научных работ (8 – без соавторов), в том числе 4 – в изданиях, рекомендованных ВАК РФ (из них 1 свидетельство о регистрации программы для ЭВМ).

Структура и объем работы. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 82 наименований. Работа изложена на 122 страницах основного текста.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Bo введении диссертации обоснована актуальность темы, сформулированы цель И задачи исследования, научная новизна, охарактеризованы теоретическая и практическая значимость, основные положения, выносимые на защиту.

В первой главе проанализированы пути повышения эффективности управления инвестированием программы развития сложноструктурированной организационной системы.

Для характеристики структуры инвестирования определено понятие сложноструктурированной организационной системы (СОС) как множество объектов с однородными видами деятельности O_i , $i=\overline{1,I}$, объединенных в организационное целое, целенаправленное взаимодействие которых при инвестировании программы развития на множестве временных периодов $t=\overline{1,T}$ обеспечивает управляющий центр.

Процесс инвестирования представлен в виде структурной схемы, приведенной на рис. 1.

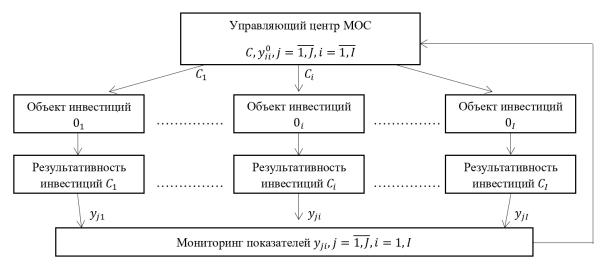


Рисунок 1.1 – Структурная схема процесса инвестиций СОС

На схеме объекты O_i , $i=\overline{1,I}$ являются объектами инвестиций, а управление объемом инвестиций C_i , $i=\overline{1,I}$ при интегральном объеме C осуществляется управляющим центром в зависимости от результативности их воздействия на развитие объектов в соответствии с заданным множеством показателей y_j , $j=\overline{1,J}$ и требований к росту этих показателей до уровня y_j^0 , $j=\overline{1,J}$. Взаимодействие участников процесса инвестиций реализуется в рамках программно-целевого подхода.

Приведенная структурная схема определяет ряд особенностей процесса инвестиций, которые влияют на управление развитием СОС:

- многоэтапность применения программно-целевого подхода при формировании программы развития СОС;
- влияние системных связей стадий формирования и реализации программы развития на эффективное управление инвестированием;
- необходимость ориентации на результат мониторинга на стадии реализации программы развития;
 - ориентация на балансовые условия инвестирования;
- возможность использования динамических характеристик реализации программы развития для ребалансировки инвестиций;
- влияние на эффективность управления процессом инвестирования программной среды поддержки принятия решений управляющим центром СОС.

Определены возможности повышения эффективности управления за счет использования следующих методов:

прогнозирования динамики процесса инвестирования по данным мониторинга и экспертным оценкам;

– оптимизационного моделирования процессов балансировки и ребалансировки инвестиций.

анализа особенностей процесса Ha основании инвестирования COC программы развития И использования прогностического эффективности оптимизационного моделирования ДЛЯ повышения процессом предложена управления ЭТИМ структурная схема системы управления, показанная на рис. 2.

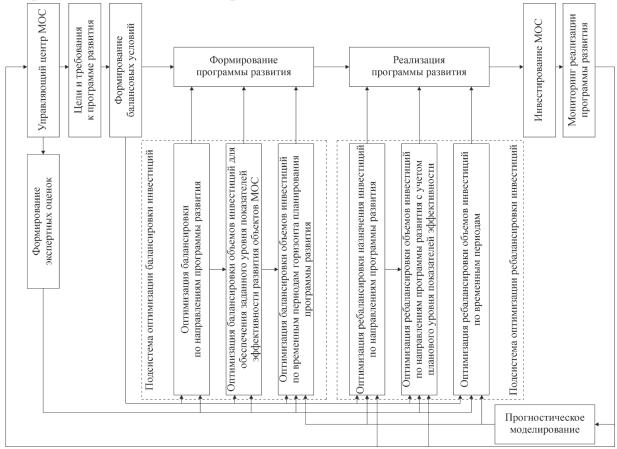


Рисунок 2 — Структурная схема управления инвестированием в рамках программы развития СОС с использованием оптимизационного и прогностического моделирования

Таким сформирована структура процесса управления формированием и реализацией программы развития сложноструктурированной организационной системой, отличающаяся интеграцией экспертного решения с результатами прогностического моделирования и оптимизации процессов балансировки и ребалансировки инвестиций и обеспечивающая выполнение требований управляющего центра к показателям эффективности деятельности объектов.

Во второй главе разработаны оптимизационные и прогностические модели управления процессом балансировки инвестиций при формировании программы развития СОС.

Развитие СОС рассмотрено как смена программ развития и их целеориентированности. Пусть во временные периоды $t_1 = \overline{1,T_1}$ действовала программа 1, цели которой определялись достижением показателями y_{j_1} уровня $y_{j_1}^0$, $j_1 = \overline{1,J_1}$. При этом осуществлялось инвестирование по n_1 -му $(n_1 = \overline{1,N_1})$ направлению программы в объемах $C_{in_1}(t)$ и проводился мониторинг значений показателей каждого объекта O_i , $i = \overline{1,I}$, $y_{j_1in_1}(t_1)$, $t_1 = \overline{1,T_1}$.

После выполнения указанной программы и достижения значений $y_{j_1in_1}(T_1)$ разрабатывается программа 2, включающая $n=\overline{1,N}$ направлений цели которой определяются достижением показателями y_j уровня y_j^0 , $j=\overline{1,J}$, где $\overline{1,J_1}\cap \overline{1,J}\neq \emptyset$, при заданном горизонте планирования $t=\overline{1,T}$.

Процесс балансировки инвестиций при формировании программы 2 направлен на обеспечение следующих балансовых условий распределения интегрального ресурса C, выделенного управляющим центром на развитие O_i , $i=\overline{1,I}$ объектов по $n=\overline{1,N}$ направлениям с целью достижения показателями значений $y_{ji_n}^0$ при заданном горизонте планирования $t=\overline{1,T}$:

между направлениями программы

$$\sum_{n=1}^{N} C_n = C,\tag{1}$$

где \mathcal{C}_n - объем инвестиций для реализации n-го направления программы 2;

— между объектами организационной системы по участию в реализации n-го направления и объема инвестиций C_{in}

$$\sum_{i=1}^{I} C_{i_n} = C_n,\tag{2}$$

— между мероприятиями программы 2, направленными на достижение показателями значений $y_{ji_n}^0$

$$\sum_{j_{i_n}=1}^{J_{i_n}} C_{ji_n} = C_{in},\tag{3}$$

 C_{ji_n} - объем инвестиций, позволяющий реализовать мероприятия n-го направления на развитие объекта по показателю j за все периоды времени $t=\overline{1,T};$

 между временными периодами реализации программы 2 при заданном горизонте планирования

$$\sum_{t=1}^{T} C_{ji_n}(t) = C_{ji_n},\tag{4}$$

где $C_{ji_n}(t)$ - объем инвестиций в каждый период времени t, $t=\overline{1,T}$, для реализации мероприятий, обеспечивающих заданный рост значений показателя y_{ii_n} .

Оптимизационное моделирование распределения инвестиций в соответствии с балансовыми условиями основано на реализации нисходящего и восходящего циклов обеспечения их выполнения (рис. 3).

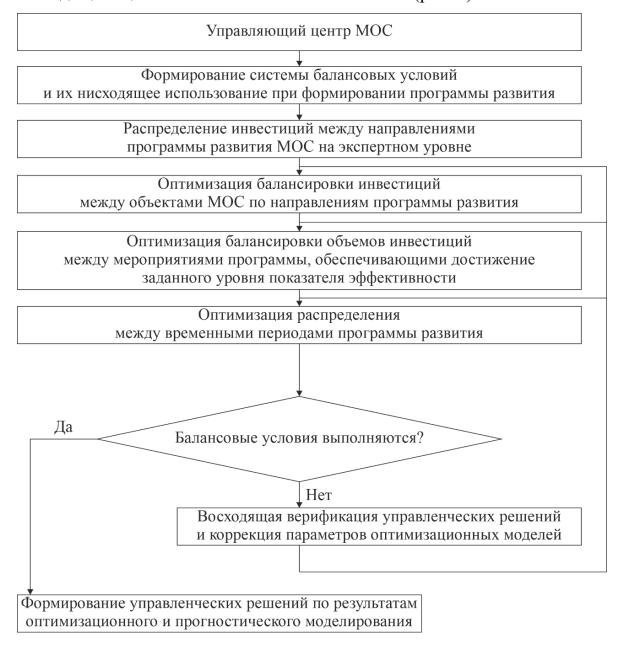


Рисунок 3 — Структурная схема нисходящего и восходящего циклов выполнения балансовых условий при формировании программы развития СОС

Выполнение балансового условия (2), достигается за счет привлечения к n-му направлению программы 2 подмножества объектов организационной системы $i_n' = \overline{1, I_n'}$.

В этом случае оптимизационное моделирование направлено на выбор значений альтернативных переменных

$$x_{in} = \begin{cases} 1, \text{ если } i - \text{ й объект целесообразно инвестировать} \\ \text{по } n - \text{му направлению программы развития,} \\ 0, \text{в противоположном случае, } i_n = \overline{1, I_n}, n = \overline{1, N} \end{cases}$$
 (5)

в соответствии с оптимизационной моделью

$$\sum_{i=1}^{I} \sum_{n=1}^{N} \alpha_{in} \, x_{in} \to \max_{x_{in}},$$

$$\sum_{i=1}^{I} \sum_{n=1}^{N} C_{i_n}^0 \, x_{in_2} \leq C,$$

$$(6)$$

$$x_{in} = \begin{cases} 1, \\ 0, & i_n = \overline{1, I_n}, n = \overline{1, N} \end{cases}.$$
 Для формализации экстремального требования в (6) используется

Для формализации экстремального требования в (6) используется линейная функция, в которой коэффициенты α_{in} определяют значимость влияния инвестиций по n — му направлению на развитие i — го объекта.

Коэффициенты значимости определяются с использованием экспертных оценок:

- значений объема инвестиций, прогнозируемых для обеспечения оптимальных условий развития i-го объекта по n-му направлению программы 2 $C_{i_n}^{np}$;
- значений термов лингвистической переменной <Допустимо изменить показатели развития i-го объекта в соответствии с требованиями за счет инвестирования n-го направления программы 2>.

Предложен алгоритм решения задачи (6), основанный на интеграции рандомизированного поиска на множестве булевых переменных и верхних оценок корня дерева метода ветвей и границ.

Сформирована оптимизационная модель выполнения балансового условия (3).

$$\sum_{j=1}^{J} \beta_{ji'_{n}} x_{ji'_{n}} \to \max_{x_{ji'_{n}}},$$

$$\sum_{j=1}^{J} C_{ji'_{n}}^{0} x_{ji'_{n}} = C_{i'_{n}}^{*}, i'_{n} = \overline{1, I'_{n}},$$
(7)

$$x_{ji_n'}=\left\{egin{aligned} 1,j=\overline{1,J}\,,i_n'=\overline{1,I_n'}\,,n=\overline{1,N}\,,\end{aligned}
ight.$$

где $C_{ji'_n}^0$ - экспертная оценка фактической потребности объектов СОС в инвестициях для реализации мероприятий по j-му показателю;

 $\beta_{ji'_n}$ — коэффициенты значимости влияния инвестиций на развитие i' — го объекта по n-му направлению программы для реализации мероприятий по j-му показателю, вычисляемые на основе экспертных оценок.

Показано, что для формирования оптимизационной модели балансировки инвестиций на основе условия (4) необходимо предварительно вычислять следующие оценочные характеристики:

— прогностические оценки изменения показателей $\hat{j} = \overline{1, \hat{J}} \in (\overline{1,J} \cap \overline{1,J_1})$ в рамках заданного горизонта планирования программы 2 $t=\overline{1,T}$, полученные путем машинного обучения моделей по ретроспективным временным рядам на основе мониторинга показателей $y_{j'i'_n}(t_1), t=\overline{1,T_1}$:

$$\hat{y}_{i'i'_n}(t) = f(C_{i'i_n}(t_1), t_1), \tag{8}$$

где $\hat{y}_{j'i'_n}(t)$ — прогностическая оценка значений показателей в периоды времени $t=\overline{1,T},$ вычисленная с помощью нейросетевой модели $f(\mathcal{C}_{j'i'_n}(t_1),t_1);$

— прогностические экспертные оценки изменения показателей $j''=\overline{1,J''}$ при условии $\overline{1,J'}\cup\overline{1,J''}=\overline{1,J}$ от значения $y_{j''i'_n}(T_1)$ до заданного значения $y_{j''i'_n}=y_{j''i'_n}(T)$

$$\hat{y}_{j''i'_n}(t) = f(C_{j''i'_n}(t), t), \tag{9}$$

где $C_{j''i'_n}(t)$ — экспертные оценки набора дискретных значений, характеризующих объем инвестиций на мероприятия, которые обеспечивают рост показателей $y_{j''i'_n}$ в рамках программы 2

$$C_{j''i'_n}^1(t) < C_{j''i'_n}^2(t) < \dots < C_{j''i'_n}^g(t) < \dots < C_{j''i'_n}^G(t) = C_{j''i'_n}^0(t) = C_{j''i'_n}^0(t)$$
(10)

— экспертные оценки набора дискретных значений, характеризующих объем инвестиций на мероприятия, которые обеспечивают рост показателей $y_{j'i'_n}$ в рамках программы 2

$$C_{j'i_n'}^1(t) < C_{j'i_n'}^2(t) < \dots < C_{j'i_n'}^g(t) < \dots < C_{j'i_n'}^g(t) = C_{j'i_n'}^g. \tag{11}$$

С учетом (8) – (11) в качестве экстремального определено требование максимального роста значений каждого показателя y_{ji_n} за периоды времени $t=\overline{1,T}$

$$\sum_{t=1}^{T} \hat{y}_{ji'_n} \left(C_{ji'_n}^g(t), t \right) \to C_{ji'_n}^g(t), g = \overline{1, G}, t = \overline{1, T} . \tag{12}$$

Граничные требования определяются балансовым условием (4) и наборами дискретных значений объема инвестиций (10), (11).

Объединяя экстремальные (12) и граничные требования, имеем следующую оптимизационную задачу

$$\sum_{t=1}^{T} \hat{y}_{ji'_{n}}(C_{ji'_{n}}(t), t) \to \max_{C_{ji'_{n}}(t), t = \overline{1, T}},$$

$$\sum_{t=1}^{T} C_{ji'_{n}}(t) = C_{ji'_{n}}^{0},$$

$$C_{ji'_{n}}(t) = C_{ji'_{n}}^{1}(t), \dots, C_{ji'_{n}}^{g}(t), \dots, C_{ji'_{n}}^{G}(t), t = \overline{1, T}.$$
(13)

Предложена структурная схема принятия управленческих решений на основе оптимизационной модели (13).

Интеграция информационных ресурсов, мониторингового и экспертного оценивания с оптимизационным и прогностическим моделированием для обеспечения выполнения балансовых условий позволяет сформировать единую структурную схему управления процессом балансировки инвестиций при формировании программы развития СОС.

Таким образом, разработаны оптимизационные модели и алгоритмы принятия управленческих решений при формировании программы развития сложноструктурированной оргапнизационной системы, отличающиеся видом зависимостей экстремальных и граничных от оптимизируемых переменных и их учетом при поиске эффективного распределения инвестиций между объектами и временными периодами и обеспечивающие выполнение балансовых условий.

Третья глава посвящена оптимизации управления процессом ребалансировки инвестиций при реализации программы развития СОС.

Назначение инвестиций по направлениям программы развития осуществляется на основе балансового условия (3) путем решения оптимизационной задачи (6). В результате по каждому n-му направлению определяется подмножество объектов $i_n = \overline{1,I_n} \in \overline{1,I}$, которые используют инвестиции $C_{in}^* = C_{in}^0$ в рамках программы развития. Поскольку значения

 C_{in}^0 , $i_n = \overline{1, I_n}$ являются экспертными прогностическими потребности в инвестиционном ресурсе каждого объекта $i_n = \overline{1, I_n}$, распространенной ситуацией при реализации программы развития в течение промежутка времени τ , включающего временные периоды $t = \overline{1, \tau}$, является освоение инвестиций $C_{i_n}^*(t)$ рядом объектов $i_n'=\overline{1,I_n'}$ в неполном объеме. В последующих временных ЭТОМ случае периодов ДЛЯ инвестиций целесообразно провести ребалансировку счёт высвободившегося ресурса

$$\Delta C_n = \sum_{i'_n=1}^{l'_n} \sum_{t=1}^{\tau} (C_{i'_n}^*(t) - C_{i'_n}^P(t))$$
 (14)

где $C_{i'_n}^*(t)$, $C_{i'_n}^P(t)$ — соответственно установленный управляющим центром и реально освоенный инвестиционный ресурс в период времени $t=\overline{1,\tau}$.

При балансировке назначения инвестиций по направлениям программы развития в (6) используются коэффициенты значимости влияния инвестиций по n-му направлению на развитие i-го объекта, которые формируются с использованием априорных экспертных оценок. К моменту времени τ известны значения освоенных инвестиций $C_{i'_n}^P(t)$, на основе которых предлагается для каждого объекта $i=\overline{1,I}$ установить упущенную выгоду по n-му направлению программы развития

$$v_{i'_n}(t) = \begin{cases} C^*_{i'_n}(t) - C^P_{i'_n}(t) \text{ для объектов с номерами } i = i'_n, \\ 0 \text{ для объектов с номерами } i = \overline{1, I}, i \neq i'_n. \end{cases}$$
 (15)

Значения (15) позволяют определить упущенную выгоду и на ее основе распределять высвободившийся ресурс (14) времени $t=\overline{1,\tau}$

$$v_{i'_n} = \sum_{t=1}^{\tau} v_{i'_n}(t). \tag{16}$$

В свою очередь значения (16) дают возможность установить ранговую последовательность объектов в смысле упущенной выгоды с рангами $r_i^n = \overline{1,I}$. Ранг $r^n = 1$ устанавливается объекту с наибольшей упущенной выгодой, далее следуют объекты с убывающими значениями (16) и возрастанием величины ранга на единицу. Затем определяются ранги объектов r_i^n при $v_{i_n'}(t) = 0$. Здесь возрастание величины рангов происходит по мере уменьшения значений коэффициентов значимости a_{in} .

Кроме рангового ряда $r^n = \overline{1,I}$ формируется экспертный ранговый ряд, который отражает упорядоченность объектов в смысле упущенной выгоды по n-му направлению программы развития $e^n_i = \overline{1,I}$.

В качестве меры близости ранговых рядов r^n и e^n используем коэффициент ранговой корреляции Спирмена

$$\rho^n = 1 - \frac{6\sum_{i=1}^{I} (e_i^n - r_i^n)^2}{I(I^2 - 1)}.$$
 (17)

Совпадению рангового ряда по результатам реализации программы развития и экспертного рангового ряда соответствует значение $\rho^n=1$, что возможно для некоторых направлений развития в редких случаях. Тогда на промежуток времени $t_1=\overline{\tau+1,T}$ сохраняют назначение, принятое в процессе балансировки инвестиций.

Несовпадение рассматриваемых ранговых рядов при $-1 \le \rho^n < 1$ требует изменения назначения инвестиций. Для выполнения процесса ребалансировки предлагается коррекция коэффициентов значимости с учетом значений (17). При однонаправленности ранговых рядов $0 \le \rho^n < 1$

$$a_{in}^{ck} = \rho^n a_{in} \,. \tag{18}$$

При разнонаправленности ранговых рядов $-1 \le \rho^n \le 0$ и значимость необходимо корректировать следующим образом

$$a_{in}^{ck} = (1 + \rho^n)a_{in}. (19)$$

Значения (18), (19) используются при формировании экстремального требования процесса ребалансировки с введением оптимизируемых альтернативных переменных

$$z_{in} = \begin{cases} 1, \text{если } i' - \text{объект целесообразно инвестировать по } n - \text{му} \\ \text{направлению на промежутке времени } t_1 = \overline{\tau + 1, T_1}, \\ 0, \text{в противном случае, } i' = \overline{1, I'}, n = \overline{1, N}. \end{cases}$$
 (20)

Граничные условия направлены на освоение высвободившегося ресурса (14) при экспертных оценках потребности i'-го объекта в инвестициях по n-му направлению на промежуток времени $t_1 = \overline{\tau + 1}, T_1$. Окончательно, с учетом условий бипарности (20) получаем следующую оптимизационную модель

$$\sum_{i=1}^{I} \sum_{n=1}^{N} a_{in}^{ck} z_{in} \to \max_{z_{in}},$$

$$\sum_{i=1}^{I} \sum_{n=1}^{N} a_{in}^{\tau} z_{in} \le \sum_{n=1}^{N} \Delta C_{n},$$

$$z_{in} = \begin{cases} 1, & i = \overline{1, I}, \\ 0 & i = \overline{1, N} \end{cases}.$$
(21)

В результате решения (21) получаем назначение инвестиций по направлениям программы развития на промежуток времени $t=\overline{\tau+1,T},$ которые характеризуются следующими нумерационными множествами

$$i_n^{\prime\prime} = \overline{1, I_n^{\prime\prime}}, n = \overline{1, N}. \tag{22}$$

образом, сформированы модель и алгоритм Таким принятия управленческого решения при ребалансировке инвестиций по направлениям программы развития, отличающиеся формой использования сравнительного анализа ранговых рядов объемов упущенной выгоды в процессе оптимизации обеспечивающие включение новых объектов для дополнительного инвестирования.

Оптимизация ребалансировки объемов заключается в максимально возможном выделении дополнительных инвестиций объектам с номерами $i_n''=\overline{1,I_n''}$ в соответствии с (22) по n-му направлению $\mathcal{C}_{i_n''}^{\mathbb{A}}\to max$, $i_n''=\overline{1,I_n''}.$

$$C_{i_n''}^{\mathbb{A}} \to max, i_n'' = \overline{1, I_n''}. \tag{23}$$

Требование (23) является экстремальным требованием задачи.

требования Граничные определяются балансовым условием соответствия объему дополнительных инвестиций (14)

$$\sum_{i_{n}^{"}=1}^{I_{n}^{"}} C_{i_{n}^{"}}^{\mathsf{A}} = \Delta C_{n} \tag{24}$$

и экспертной оценкой интервалов потребности объектов в дополнительном инвестиционном ресурсе

$$C_{i_n^{\prime\prime}}^{\text{MMH}} \le C_{i_n^{\prime\prime}}^{\text{A}} \le C_{i_n^{\prime\prime}}^{\text{MAKC}}. \tag{25}$$

Объединяя экстремальные требования (23) с граничными (24), (25) получаем следующую оптимизационную модель

$$C_{i''}^{A} \to max, i''_{n} = \overline{1, I''_{n}},$$

$$\sum_{i''_{n}=1}^{I''_{n}} C_{i''_{n}}^{A} = \Delta C_{n},$$

$$C_{i''_{n}}^{MMH} \le C_{i''_{n}}^{A} \le C_{i''_{n}}^{MAKC}.$$
(26)

Для получения управленческого решения на основе решения задачи оптимизации (26)разработан алгоритм преобразования поиска оптимального решения, приведенный на рис. 4.

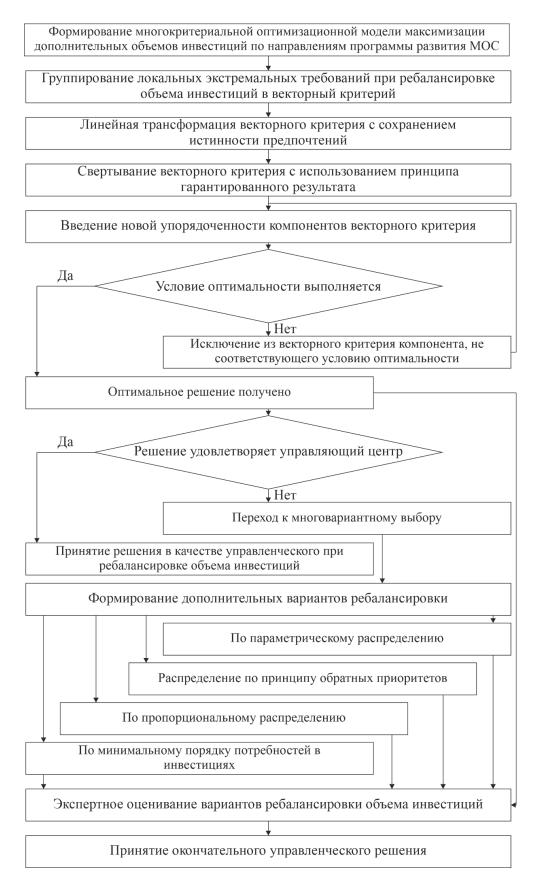


Рисунок 4 — Структурная схема оптимизации ребалансировки объемов инвестиций по направлениям программы развития СОС

Оптимизационное моделирование процесса ребалансировки по временным периодам программы развития СОС свяжем с необходимостью

корректировки распределения инвестиций $C_{ji''_n}^*(t), t = \overline{1,T}$ таким образом, чтобы выполнить балансовое условие (4) и обеспечить минимальное отклонение мониторизуемого показателя $y_{ji''_n}^{\text{M}}(t)$ от соответствующего оптимальному решению $y_{ji''_n}(t)$

$$\Delta y_{ji_n''}(t_1) = y_{ji_n''}^*(t_1) - y_{ji_n''}^{M}(t_1) > 0, \tag{27}$$

где $i_n'' = \overline{1, I_n''}$ - множество объектов, инвестируемых по -му направлению, для которых выявлено отклонение.

При этом рассмотрим два способа ребалансировки в случае выявления отклонения (27):

- в заданный временной период t= au

$$\Delta y_{ji_{n}^{"}}(t=\tau) = y_{ji_{n}^{"}}^{*}(t=\tau) - y_{ji_{n}^{"}}^{M}(t=\tau); \tag{28}$$

– при превышении порогового значения в момент времени $t= au_1$

$$\Delta y_{ji_n''}(t=\tau_1) = y_{ji_n''}^*(t=\tau_1) - y_{ji_n''}(t=\tau_1) \ge \delta, \tag{29}$$

где $\delta > 0$ — пороговое значение величины отклонения (27), установленное управляющим центром.

В этих случаях оптимизационные модели аналогичны (13), но для периодов времени $t > \tau$ либо $t > \tau_1$. При этом изменяются экстремальное и граничное требования. Перераспределить инвестиции $C_{ji''_n}^*(t)$ надо таким образом, чтобы минимизировать отклонение (28) либо (29). Соответственно граничное требование при отклонении (28) на временные периоды $t = \overline{\tau + 1, T}$

$$\sum_{t=\tau+1}^{T} C_{ji''_n}(t) = C_{i''_n}^{A^*}$$

при условии превышения отклонения (29) на временные периоды $t=\overline{\tau_1+1,T}$

$$\sum_{t=\tau_1+1}^{I} C_{ji''_n}(t) = C_{i''_n}^{A^*}.$$

В результате оптимизационная модель процесса ребалансировки в случае выявления отклонения в заданный момент времени $t_1 = \tau$ имеет вид:

$$\sum_{t=\tau+1}^{T} \left[y_{ji''_{n}}^{*}(t) - \hat{y}_{ji''_{n}}(C_{ji''_{n}}(t), t) \right] \rightarrow \min_{C_{ji''_{n}}(t), t = \overline{\tau+1}, \overline{T}},$$

$$\sum_{t=\tau+1}^{T} C_{ji''_{n}}(t) = C_{ji''_{n}},$$

$$C_{ji''_{n}}(t) = C_{ji''_{n}}^{1}(t), \dots, C_{ji''_{n}}^{g}(t), \dots, C_{ji''_{n}}^{G}(t), t = \overline{\tau+1, T},$$
(30)

где прогностические оценки $\hat{y}_{ji_n''}$ определяются аналогично (8) с дополнительным включением в обучающую выборку для построения прогностической модели значений

$$y_{ji_n''}(t), t = \overline{1, T_1 + \tau}.$$

В случае превышения порогового значения по условию (29) имеем:

$$\sum_{t=\tau_{1}+1}^{T} \left[y_{ji''_{n}}^{*}(t_{1}) - \hat{y}_{ji''_{n}}(C_{ji''_{n}}(t), t) \right] \rightarrow \min_{C_{ji''_{n}}(t), t = \overline{\tau_{1}+1, T}},$$

$$\sum_{t=\tau_{1}+1}^{T_{1}} C_{ji''_{n}}(t) = C_{ji''_{n}},$$

$$C_{ji''_{n}}(t) = C_{ji''_{n}}(t), \dots, C_{ji''_{n}}^{g}(t), \dots, C_{ji''_{n}}^{G}(t), t = \overline{\tau_{1}+1, T},$$

$$(31)$$

где прогностические оценки $\hat{y}_{ji''_n}$ определяются также аналогично (8) с дополнительным включением в обучающую выборку для построения прогностической модели значений

$$y_{ji_n''}(t), t = \overline{1, T + \tau_1}.$$

Использование оптимизационных моделей (30), (31) позволяет провести ребалансировку инвестиций при реализации программы развития как в случае выявления отклонений от оптимальной стратегии в заданный момент времени, так и в случае превышения заданного порога отклонения.

Таким образом, разработаны оптимизационные модели и алгоритмы принятия управленческих решений при ребалансировке объемов инвестиций объектов организационной системы и их распределения между временными периодами, отличающиеся этапностью использования прогностического моделирования в процессе многокритериального и многовариантного выбора и обеспечивающие восстановление выполнения балансовых условий достижение показателей И заданного уровня эффективности.

В четвертой главе проведен анализ приложения разработанных моделей, алгоритмов и программных средств в практике управления развитием СОС.

Для использования разработанного комплекса моделей и алгоритмов балансировки и ребалансировки инвестиций в практике управления развитием СОС созданы следующие программные средства:

Модуль 1 "Оптимизация назначения инвестиций по направлениям программы развития сложноструктурированной организационной системы"

Модуль 2 "Оптимизация распределения объема инвестиций по направлениям программы развития сложноструктурированной организационной системы"

Модуль 3 "Оптимизация распределения инвестиций по временным периодам программы развития сложноструктурированной организационной системы"

Каждый модуль основывается на алгоритмах оптимизации инвестиций, как при формировании, так и при реализации программы развития. При этом используются соответственно оптимизационные модели балансировки и ребалансировки инвестиций. Для реализации модулей 1, 2 требуется обращение к стандартному пакету программ оптимизации, включающему метод ветвей и границ. Для реализации модуля 3 требуется машинное обучение прогностической модели. С этой целью организуется обращение к стандартному пакету машинного обучения.

На разработанные программные модули получены сертификаты о государственной регистрации в Роспатенте.

Структурная схема взаимодействия модулей с информационной системой мониторинга, стандартными пакетами программ машинного обучения и оптимизации в рамках системы управления инвестированием программы развития СОС приведена на рис. 5.

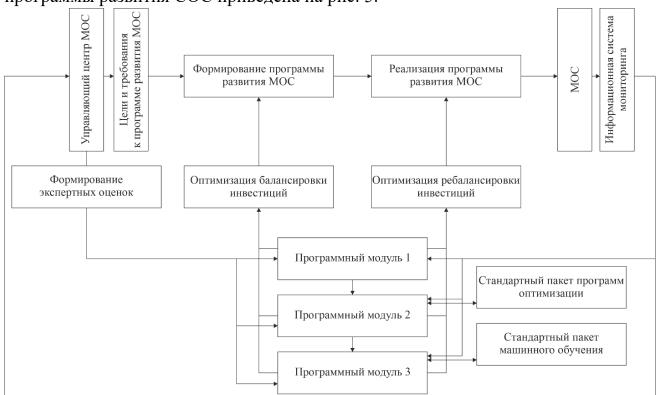


Рисунок 5 — Структурная схема взаимодействия разработанных программных модулей в рамках системы управления инвестированием развития СОС

Разработка программных средств позволяет перейти к их использованию в практике управления реальными СОС. Одним из классов

сложноструктурированных организационных систем являются региональные организационные системы аграрного профиля. Для них характерно повышение эффективности деятельности за счет инвестирования в рамках долгосрочных программ развития по целому ряду направлений. При этом инвестирование по направлению рассматривается как отдельный проект, взаимодействующий с другими проектами для обеспечения заданных управляющим центром целей и требований к программе развития в целом.

Оценка результативности применения разработанных моделей, алгоритмов и программных средств осуществляется путем сравнения результатов вычислительных экспериментов по оптимизации балансировки и ребалансировки инвестиций с плановыми и мониторируемыми объемами освоенных инвестиций и достигнутыми уровнями показателей эффективности в рамках действующей программы развития региональной сложноструктурированной организационной системы аграрного профиля.

Заключение

Проведенные исследования позволяют получить следующие основные результаты:

- 1. Проведен анализ системных связей процессов формирования и реализации программы развития сложноструктурированной организационной системы и предложена структура управления инвестированием на основе оптимизационного и прогностического моделирования.
- 2. Обоснованы балансовые условия инвестирования за счет средств программы развития и этапность их выполнения при оптимизации процессов балансировки и ребалансировки инвестиций.
- 3. Сформированы оптимизационные модели булевого программирования и алгоритмы принятия управленческих решений для балансировки и ребалансировки инвестиций по направлениям программы развития.
- 4. Предложена схема оптимизационного моделирования балансировки объемов инвестиций для обеспечения заданного уровня показателей эффективности развития СОС.
- 5. Разработан алгоритм принятия управленческих решений на основе многокритериальной и многовариантной оптимизации для ребалансировки объемов инвестиций объектам СОС по направлениям программы развития.
- 6. Сформированы оптимизационные модели и алгоритмы принятия управленческих решений, основанные на прогностическом моделировании временных рядов мониторингового и экспертного оценивания показателей эффективности развития объектов СОС, для балансировки и ребалансировки

распределения объемов инвестиций между временными периодами при заданном горизонте планирования программы развития.

- 7. На основе оптимизационных моделей и алгоритмов принятия управленческих решений разработаны программные модули и структура их взаимодействия с управляющим центром, информационной системой мониторинга, стандартными пакетами программ машинного обучения и оптимизации в рамках системы управления инвестированием развития СОС.
- Проведена оценка результативности применения разработанных моделей, алгоритмов и программных средств в практике управления инвестированием В сложноструктурированной региональной организационной системе аграрного профиля на основе программы развития. Предполагаемый подход с применением вычислительного эксперимента предложить управленческие решения ПО ребалансировке позволил инвестиций с сокращением временного периода достижения заданных уровней показателей эффективности на 16%.

Основные результаты диссертации опубликованы в следующих работах:

Публикации в изданиях, рекомендуемых ВАК РФ

- 1. Бухольцев И.М., Львович Я.Е. Оптимизация моделирования процессов балансировки и ребалансировки инвестиций для реализации программы развития многообъектной организационной системы. / Моделирование, оптимизация и информационные технологии. 2024;12(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1419 DOI: 10.26102/2310-6018/2024.44.1.015
- 2. Бухольцев И.М., Львович Я.Е., Рындин Н.А. Оптимизация распределения объема инвестиций при реализации программы развития многообъектной организационной системы. / Вестник Российского нового университета. Серия "Сложные системы: модели, анализ и управление". 2024, №2. С.41-50.
- 3. Бухольцев И.М. Структуризация управления инвестированием многообъектной организационной системы на стадиях формирования и реализации программы развития с использованием оптимизационного подхода. / Моделирование, оптимизация и информационные технологии. 2024;12(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1559 DOI: 10.26102/2310-6018/2024.45.2.017

Свидетельство о государственной регистрации программ для ЭВМ

4. Бухольцев И.М. Оптимизация назначения инвестиций по направлениям программы развития многообъектной организационной системы / И.М. Бухольцев, Н.А. Рындин // Свидетельство о государственной регистрации программы для ЭВМ 2025682139, 21.08.2025. Заявка № 2025681540 от 21.08.2025

Статьи и материалы конференций

- 5. Бухольцев И.М. Автоматизация ребалансировки портфеля ценных бумаг как способ защиты от факторов, влияющих на фондовый рынок. / Математика, информационные технологии, приложения. 2022. с. 20-22
- 6. Бухольцев, И. М. Актуальность применения методов нейросетевого прогнозирования на рынке инвестиций / И. М. Бухольцев // Вестник Воронежского института высоких технологий. 2022. № 4(43). С. 24-26.
- 7. Бухольцев, И. М. Внедрение интеллектуальных систем в процесс ребалансировки инвестиций / И. М. Бухольцев // Интеллектуальные информационные системы: труды Международной научно-практической конференции, Воронеж, 08–10 декабря 2022 года. Воронеж: Воронежский государственный технический университет, 2023. С. 13-16.
- 8. Бухольцев, И. М. Анализ применения методов нейросетевого прогнозирования при оптимизации инвестиций / И. М. Бухольцев // Оптимизация и моделирование в автоматизированных системах: труды Международной молодежной научной школы, Воронеж, 20–21 декабря 2023 года. Воронеж: Воронежский государственный технический университет, 2024. С. 89-91.
- 9. Бухольцев, И. М. Оптимизационный подход к управлению ребалансировкой инвестиций многообъектной организационной системы / И. М. Бухольцев // Оптимизация и моделирование в автоматизированных системах: Труды Международной молодежной научной школы, Воронеж, 11—12 декабря 2024 года. Воронеж: Воронежский государственный технический университет, 2025. С. 130-133.
- 10. Бухольцев И.М. Автоматизация при реинвестировании в многообъектных организационных системах сельскохозяйственного профиля // Интеллектуальные информационные системы: Труды международной научно-практической конференции. Воронеж, 24-25 февраля 2025 г. Воронеж, Воронежский государственный технический университет, 2025. С. 61-64
- 11. Бухольцев, И.М., Рындин Н.А. Оптимизационное моделирование при управлении ребалансировкой инвестиционного процесса развития многообъектной организационной системы // Вестник Тверского государственного технического университета. Серия: Технические науки. − 2025. № 1(25). С. 55-65.

Подписано в печать 24.10.25 Формат 60х84/16. Бумага для множительных аппаратов. Усл. печ. л. 1,0. Тираж 80 экз. АНОО ВО "Воронежский институт высоких технологий" 394043 Воронеж, ул. Ленина, 73А