На правах рукописи

Алексеев Роман Павлович

# ВЛИЯНИЕ КОНСТРУКТИВНО-ТЕХНОЛОГИЧЕСКИХ ФАКТОРОВ НА НАСЫЩЕНИЕ ВОЛЬТ-АМПЕРНЫХ ХАРАКТЕРИСТИК МОЩНЫХ СВЧ LDMOS-ТРАНЗИСТОРОВ

Специальность 2.2.2. Электронная компонентная база микро- и наноэлектроники, квантовых устройств

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

Воронеж – 2024

выполнена в ФГБОУ BO «Воронежский Диссертация государственный университет»

| Научный руководитель:  | Бормонтов Евгений Николаевич<br>доктор физико-математических наук,<br>профессор                                                                                                                                      |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Официальные оппоненты: | Филиппов Владимир Владимирович<br>доктор физико-математических наук,<br>доцент, Липецкий государственный<br>педагогический университет имени<br>П.П. Семенова-Тян-Шанского, профессор<br>кафедры математики и физики |  |  |
|                        | Винокуров Александр Александрович<br>кандидат технических наук, Воронежский<br>государственный технический<br>университет, доцент кафедры<br>твердотельной электроники                                               |  |  |

Ведущая организация:

АО Научно-производственное предприятие «Пульсар», г. Москва

Защита состоится «21» мая 2024 года в 14:00 часов в конференц-зале на заседании диссертационного совета 24.2.286.01 ФГБОУ ВО «Воронежский государственный технический университет» по адресу: 394026, г. Воронеж, Московский проспект, 14, ауд. 216

С диссертацией можно ознакомиться в научно-технической библиотеке ФГБОУ ВО «Воронежский государственный технический университет» и на сайте www.cchgeu.ru

Автореферат разослан «12» марта 2024 года.

Ученый секретарь



## ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

#### Актуальность темы

Первые мощные полевые СВЧ-транзисторы были разработаны и освоены в серийном производстве в 1970-х годах в СССР. И хотя приборам первых серий КП901-КП904 не удалось вытеснить биполярные приборы, они показали перспективность мощных СВЧ МОS-транзисторов. В последующие годы конструкция полевых СВЧ-транзисторов активно совершенствовалась, появились такие технологии, как DMOS (Double-diffused Metal Oxide Semiconductor) и VDMOS (Vertical Double-diffused Metal Oxide Semiconductor). В 1990-х годах, когда DMOS/VDMOS-транзисторы достигли предела своего совершенствования, получила развитие новая LDMOS-технология (Laterally Double-diffused Metal Oxide Semiconductor). Первые серийные образцы LDMOS-транзисторов были созданы фирмами Motorola (ныне M/A-COM) и Ericsson. В настоящее время СВЧ LDMOS-транзисторы производятся более двадцатью компаниями, наиболее известными из которых являются Ampleon (появилась в результате слияния NXP Semiconductors и Freescale Semiconductor), Microsemi, Integra, ST Microelectronics. В России разработкой и производством мощных СВЧ LDMOS-транзисторов занимаются АО «НПП «Пульсар» и АО «НИИЭТ».

LDMOS-транзисторы Мощные СВЧ В настоящее время широко применяются в приемо-передающей радиоаппаратуре различного назначения. Несмотря на распространение в последнее время приборов на основе широкозонных полупроводниковых материалов, таких как нитрид галлия (GaN), кремниевые LDMOS-транзисторы продолжают занимать значительную долю рынка как в России, так и за рубежом, благодаря хорошему соотношению ценакачество и высокой воспроизводимости технологического процесса. Сегодня LDMOS-технология является основной технологией для производства широкой номенклатуры мощных СВЧ-устройств для различных применений, включающих: базовые станции сотовой системы связи, радиопередатчики сигналов Р-, L-, Sдиапазонов частот, РЛС наземного и воздушного базирования, систем навигации и др. Ведущие зарубежные производители за прошедшее десятилетие смогли расширить рабочий диапазон частот LDMOS-транзисторов, который теперь покрывает частоты от 1 МГц до 6 ГГц, включая WiMax, WCDMA и радарный S-Объявлены намерения о разработке LDMOS-транзисторов диапазон. применения в базовых станциях пятого поколения сотовой связи (5G). Показано, что СВЧ LDMOS-транзисторы способны работать и на частотах до 12 ГГц. Кроме интегральные LDMOS-транзисторы нашли широкое того, применение в интегральных схемах.

Подобно обычным MOS-транзисторам LDMOS-транзисторы характеризуются эффектом насыщения выходной (сток-истоковой) вольтамперной характеристики (BAX) при высоких напряжениях на стоке. Однако в случае LDMOS-транзистора существует две существенные особенности. Первая – насыщается не только выходная, но и переходная характеристика. Вторая – насыщение выходной BAX не является «строгим», ток стока продолжает возрастать при повышении напряжения на стоке, но существенно медленнее, чем на линейном участке ВАХ. По этой причине в зарубежной литературе данный эффект получил название квазинасыщения (quasi-saturation).

Квазинасыщение ВАХ влечет за собой ряд проблем, способных привести к ухудшению параметров СВЧ-транзисторов и устройств на их основе.

Квазинасыщение переходной ВАХ приводит к сокращению протяженности линейного участка, что накладывает ограничения при работе транзистора в качестве усилительного элемента в усилителях мощности.

Квазинасыщение выходной ВАХ приводит к росту рассеиваемой мощности при работе транзистора и, соответственно, разогреву кристалла. Показано, что снижение эффекта квазинасыщения положительно сказывается на надежности СВЧ-транзисторов благодаря снижению инжекции горячих электронов в подзатворный диэлектрик и на устойчивость транзистора к пробою через паразитный биполярный транзистор.

До настоящего времени при разработке отечественных LDMOS-транзисторов учету эффекта квазинасыщения ВАХ должного внимания не уделялось, поэтому актуальна задача выявления конструктивно-технологических параметров, позволяющих этот эффект минимизировать.

<u>Цель работы</u> – оптимизация конструкции LDMOS-транзисторной структуры для снижения эффекта квазинасыщения CB4 LDMOS-транзисторов.

Для достижения поставленной цели решались следующие задачи:

1. Корректировка численной модели мощного СВЧ LDMOS транзистора разработанной в САПР Sentaurus TCAD для учета эффекта квазинасыщения ВАХ у серийно выпускаемых изделий АО НИИЭТ.

2. Выявление конструктивно-технологических параметров мощных СВЧ LDMOS-транзисторов, оказывающих наибольшее влияние на проявление эффекта насыщения/квазинасыщения ВАХ.

3. Оптимизация конструкции мощных СВЧ LDMOS-транзисторов для минимизации эффекта квазинасыщения ВАХ без ухудшения ключевых электрических параметров.

4. Разработка, изготовление и испытание LDMOS транзисторного кристалла с учетом полученных знаний для их верификации.

### Объекты исследования:

- приборно-технологическая модель мощной СВЧ LDMOS-транзисторной структуры, разработанная на основе технологического маршрута изготовления кристаллов мощных СВЧ LDMOS-транзисторов АО «Микрон» и запатентованных топологий №2017630162 и №2017630163, позволяющая моделировать современные конструктивные решения, применяемые в отечественных мощных LDMOSтранзисторах;

- две партии тестовых мощных СВЧ-транзисторов, в одной из которых в качестве компонента использовались кристаллы, изготовленные по усовершенствованной технологии, в другой – кристаллы, изготовленные по текущей технологии;

- две партии мощных СВЧ-транзисторов 2П9120БС, в одной из которых в качестве компонента использовались кристаллы, изготовленные по усовершенствованной технологии, в другой – по текущей технологии.

### Методы исследований

- исследование эффекта квазинасыщения в модели мощной СВЧ LDMOSтранзисторной структуры осуществлялось при помощи САПР Sentaurus TCAD, представляющей комплекс независимых программ, позволяющих проводить моделирование технологии и конструкции, а также электрических, тепловых, оптических и других параметров полупроводниковых приборов;

- измерение электрических параметров исследуемых мощных СВЧтранзисторов осуществлялось при помощи тестера контроля статических параметров Agilent B1505;

- измерение энергетических параметров тестовых мощных СВЧтранзисторов проводилось по методу согласованной нагрузки на измерительной системе на основе автоматизированных тюнеров импеданса источника и нагрузки производства Maury Microwave Corp.;

- измерение энергетических параметров мощных СВЧ-транзисторов 2П9120БС осуществлялось при помощи двух тестовых усилителей мощности, работающих на частоте 500 МГц и 230 МГц.

#### Научная новизна работы

1. Впервые численная модель мощной СВЧ LDMOS-транзисторной структуры в среде САПР Sentaurus TCAD адаптирована для исследования эффектов насыщения/квазинасыщения ВАХ.

2. Установлена и обоснована закономерность, согласно которой максимально приближенная к предельному насыщению выходная BAX LDMOSтранзисторов достигается при максимально равномерном распределении напряжённости электрического поля по длине LDD-области.

3. Установлены зависимости степени выраженности эффекта квазинасыщения ВАХ от длины затвора, глубины  $p^+$ -области истока, концентрации примеси в LDD-области, длины LDD-области (*Lightly Doped Drain*), длины перекрытия LDD-области полевым электродом и других конструктивно-технологических параметров CB4 LDMOS-транзисторов.

4. Установлено, что повышение концентрации примеси в LDD-области приводит к повышению значения напряжения на затворе, при котором наблюдается минимальное проявление кавазинасыщения, а также к существенному подавлению квазинасыщения в области напряжений затвора, характерных для насыщения переходной BAX. Внедрение в LDD-область участка, по уровню легирования отличным от основной части LDD-области, приводит к перераспределению напряженности поля вдоль LDD-области, зависящего от концентрации в участке, его положения и протяженности.

5. Установлено, что внедрение полевого электрода приводит к существенному снижению квазинасыщения практически во всем диапазоне напряжений затвора. Эти эффекты выражены тем сильнее, чем ближе полевой электрод расположен к LDD-области и чем больший ее участок он перекрывает.

6. Установлено, что наиболее перспективной конструкцией LDMOS транзисторного кристалла с точки зрения снижения эффекта квазинасыщения является конструкция с двухуровневым полевым электродом и HDD-участком у стокового края LDD-области.

### Реализация результатов работы, практическая значимость

1. Адаптированная модель LDMOS транзисторной структуры может быть использована при разработке новых и модернизации существующих типов мощных CB4 LDMOS-транзисторов.

2. Полученные данные о влиянии конструктивно-технологических параметров мощных СВЧ LDMOS-транзисторов на проявление эффекта квазинасыщения ВАХ использованы при разработке нового мощного СВЧ LDMOS транзисторного кристалла, предназначенного для замены кристалла предыдущего поколения. На топологию разработанных кристаллов получено свидетельство РФ о государственной регистрации №2021630075.

3. Предложенные конструктивно-технологические решения, позволяющие минимизировать эффекты насыщения ВАХ мощных СВЧ LDMOS-транзисторов, внедрены в научно-производственный процесс исследований в рамках НИОКР на АО «НИИЭТ» (г. Воронеж), подтверждены актом о внедрении (использовании) результатов диссертации и могут быть использованы на других предприятиях электронной техники.

#### Основные результаты и положения, выносимые на защиту:

1. Адаптированная численная модель мощной СВЧ LDMOS-транзисторной структуры в среде САПР Sentaurus TCAD для исследования эффектов насыщения/квазинасыщения ВАХ.

2. Максимально приближенная к предельному насыщению выходная ВАХ LDMOS-транзисторов достигается при максимально равномерном распределении напряжённости электрического поля по длине LDD-области. Соответственно, для подавления эффекта квазинасыщения следует стремиться к уменьшению напряжённости поля на участке, где наблюдается его пик, и повышению на участке, где напряжённость поля мала.

3. Среди всех конструктивных элементов LDMOS транзисторного кристалла для снижения степени выраженности эффекта квазинасыщения, ключевыми являются полевой электрод и LDD-область.

4. Повышение концентрации примеси LDD-области приводит В К при котором значения напряжения на затворе, наблюдается повышению проявление кавазинасыщения, а также К существенному минимальное подавлению квазинасыщения в области напряжений затвора, характерных для насыщения переходной ВАХ. Внедрение в LDD-область участка, по уровню основной части LDD-области, легирования ОТЛИЧНЫМ OT приводит К перераспределению напряженности поля вдоль LDD-области, зависящего от концентрации в участке, его положения и протяженности.

5. Внедрение полевого электрода приводит к перераспределению напряженности поля в участке LDD-области, расположенного под ним, и к существенному снижению квазинасыщения практически во всем диапазоне напряжений затвора. Эти эффекты выражены тем сильнее, чем ближе полевой электрод расположен к LDD-области и чем больший ее участок он перекрывает.

6. Наиболее перспективной конструкцией LDMOS транзисторного кристалла с точки зрения снижения эффекта квазинасыщения является конструкция с двухуровневым полевым электродом и HDD-участком у стокового края LDD-области.

### Степень достоверности и апробация результатов

Достоверность и обоснованность полученных результатов подтверждается использованием отработанных методик и инструментов моделирования мощных СВЧ LDMOS-транзисторов, верификация которых проводилась сравнением рассчитанных электропараметров с электропараметрами реальных экспериментальных и серийных изделий, изготовленных на АО «Микрон».

Основные выводы, полученные по результатам данного исследования, были подтверждены на практике электропараметрами реальных LDMOS-транзисторов, разработанных при учете полученных знаний.

Основные результаты данной работы были представлены и обсуждены на следующих конференциях: XXII и XXIV международная научно-техническая конференция «Радиолокация, навигация, связь» (Воронеж, 2016, 2018), 23 Всероссийская межвузовская научно-техническая конференция студентов и аспирантов «Микроэлектроника и информатика – 2016» (Москва, 2016), 23 международная научно-практическая конференция «Наука сегодня. Реальность и перспективы» (Вологда, 2017), XIX Международный семинар «Физикоматематическое моделирование систем» (Воронеж, 2017).

<u>Личный вклад автора</u> состоит в постановке и организации экспериментов, обработке и анализе полученных результатов. Постановка цели и задач, согласование и корректировка исследований, составление выводов выполнялись автором совместно с научным руководителем. Основные результаты исследований, изложенные в работе, были получены автором лично, или при его непосредственном участии. Обсуждение полученных результатов и подготовка публикаций проводилась совместно с научным руководителем.

### Публикации по теме диссертации

По теме диссертации опубликовано 19 научных работ, включая 4 статьи в научных изданиях, рекомендованных ВАК для публикации диссертационных работ, в том числе одну статью, входящую в базу данных рецензируемой научной литературы Scopus, 3 свидетельства о государственной регистрации топологий интегральных микросхем, 12 работ в других научных изданиях и материалах конференций. Изданы 3 учебно-методические пособия. В перечисленных работах автору лично принадлежат: [2] – обоснование физической природы механизмов квазинасыщения в мощных СВЧ LDMOS-транзисторов; [1, 2, 4, 8, 9, 10, 11, 12, 13, 15] – разработка моделей транзисторных структур в среде САПР Sentaurus TCAD; [2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18] – проведение моделирования конструкции и электропараметров СВЧ-транзисторов в САПР Sentaurus TCAD; [1, 3, 4, 8, 9, 18, 11, 12, 13, 14, 15, 16, 17] – систематизация и обработка полученных данных; [5, 6, 7, 11, 12, 13, 15, 19] – разработка конструкции и технологии мощных CB4 LDMOS-транзисторов.

### Структура и объем диссертации

Диссертация состоит из введения, четырех глав, заключения и списка цитируемой литературы, содержащего 120 наименования, включая публикации по теме диссертации. Объем диссертации составляет 131 страниц, включая 61 рисунок и 11 таблиц. <u>Во введении</u> сформулированы цель и задачи исследования, показана научная новизна полученных результатов и их практическая значимость, приведены сведения о публикациях по теме диссертации, личном вкладе автора в совместных работах, структуре и объеме диссертации.

<u>Первая глава</u> посвящена анализу эффекта квазинасыщения вольтамперных характеристик (ВАХ) мощных СВЧ LDMOS-транзисторов с субмикронными длинами канала, физическим механизмам его возникновения, а также негативным последствиям.

Отклонение от насыщения вольт-амперных характеристик классических MOS-транзисторов с субмикронными размерами затвора обусловлено рядом короткоканальных эффектов, таких как DIBL-эффект (*Drain Induced Barrier Lowering*), SCL-эффект (*Short-Channel Length*) и других. Отличительным элементом конструкции мощного CBY LDMOS-транзистора (рис. 1) является протяженная LDD-область. Эта особенность приводит к тому, что в LDMOS-транзисторах классические короткоканальные эффекты в значительной мере подавляются и не являются определяющими в эффекте квазинасыщения BAX.

Обзор литературы, посвященной объяснению физических причин возникновения эффекта квазинасыщения в LDMOS-транзисторах, показывает, что квазинасыщение ВАХ возникает вследствие взаимодействия двух эффектов: Кирка (Kirk экранирования эффекта *Effect*) И поля стока зарядом инжектированных из канала носителей заряда.



Рис. 1 – Структура СВЧ LDMOS-транзистора

Квазинасыщение ВАХ негативно влияет на электрические параметры СВЧ LDMOS-транзисторов и может сказаться на их надежности. Поэтому необходимо выявить физические процессы и определить конструктивно-технологические параметры LDMOS-транзисторов, которые оказывают наибольшее влияние на проявление квазинасыщения, а также могут быть использованы при оптимизации конструкции данного типа приборов для минимизации проявления квазинасыщения.

<u>Во второй главе</u> описываются компьютерные модели мощных СВЧ LDMOS-транзисторов, на основе которых проводилось исследование эффекта квазинасыщения с целью определения методов ослабления его выраженности. Модели LDMOS-транзисторов были построены на основе САПР Sentaurus TCAD.

В работе для анализа эффекта квазинасыщения ВАХ использовались две модели LDMOS-транзистора: технологическая и структурная. Технологическая модель основывается на последовательном моделировании технологических операций в соответствии с технологическим маршрутом изготовления реальных мощных CB4 LDMOS-транзисторов. Она характеризуется бо́льшим соответствием между рассчитанными и реальными электропараметрами.

В структурной модели геометрические границы материалов, распределения примеси и т.д. задаются непосредственно координатами, а не через параметры технологических операций. Это позволяет абстрагироваться от непосредственных режимов технологических операций. Расчет при структурном моделировании проходит на порядок быстрее, чем при технологическом.

На рисунке 2 приведены технологическая и структурная модели базового варианта LDMOS транзисторной структуры, т.е. без полевого электрода, с равномерно легированной LDD-областью и длиной канала 0,3 мкм.



Рис. 2 – Разработанные модели базовой LDMOS транзисторной структуры: *а* – технологическая; *б* – структурная

Проведенные исследования показали, что для корректного моделирования ВАХ LDMOS-транзистора с учетом эффекта квазинасыщения, необходимо использовать следующие модели САПР Sentaurus TCAD.

Для учета сужения запрещенной зоны кремния  $\Delta E_g^0$  используется модель Слотбоома (*Slotboom*), согласно которой  $\Delta E_g^0$  рассчитывается по формуле:

$$\Delta E_g^0 = E_{ref} \left[ \ln \left( \frac{N_{tot}}{N_{ref}} \right) + \sqrt{\left( \ln \left( \frac{N_{tot}}{N_{ref}} \right) \right)^2 + 0.5} \right],$$

где:  $N_{tot}$  – суммарная концентрация примеси;  $N_{ref}$ ,  $E_{ref}$  – константы модели.

Для расчета зависимости подвижности  $\mu_{dop}$  носителей заряда от концентрации примесей используется модель Мазетти (*Masetti*). В этой модели подвижность рассчитывается по формуле:

$$\mu_{dop} = \mu_{\min 1} \cdot \exp\left(-\frac{P_c}{N_A + N_D}\right) + \frac{\mu_{const} - \mu_{\min 2}}{1 + \left((N_A + N_D)/C_r\right)^{\alpha}} - \frac{\mu_1}{1 + \left(C_s/(N_A + N_D)\right)^{\beta}},$$

где  $N_A$  и  $N_D$  – концентрации примеси акцепторного и донорного типа, соответственно,  $\mu_{\min 1}$ ,  $\mu_{\min 2}$ ,  $\mu_{const}$ ,  $\mu_1$ ,  $\alpha$ ,  $\beta$ ,  $P_c$ ,  $C_r$ ,  $C_s$  – константы модели.

Учет деградации подвижности носителей заряда у поверхности кремниевой подложки на границе раздела Si–SiO<sub>2</sub> под действием нормального к поверхности электрического поля  $F_{\perp}$  осуществляется по модели Ломбарди (*Lombardi*). В этой модели отдельно учитывается влияние на подвижность носителей заряда рассеяния на акустических фононах  $\mu_{ac}$  и рассеяние на неровностях поверхности раздела  $\mu_{sr}$ :

$$\mu_{ac} = \frac{B}{F_{\perp}} + \frac{C((N_A + N_D + N_2)/N_0)^{\lambda}}{F_{\perp}^{1/3}(T/300)^k}; \qquad \mu_{sr} = \left(\frac{(F_{\perp}/F_{ref})^A}{\delta} + \frac{F_{\perp}^3}{\eta}\right)^{-1},$$

где *A*, *B*, *C*, *F*<sub>ref</sub>,  $\lambda$ , *k*,  $\delta$ ,  $\eta$ , *N*<sub>0</sub>, *N*<sub>2</sub> – константы модели.

Итоговая подвижность  $\mu_{E\perp}$  рассчитывается в соответствии с правилом Маттиссена (*Matthiessen's rule*):

$$\frac{1}{\mu_{E\perp}} = \frac{1}{\mu_{dop}} + \frac{1}{\mu_{ac}} + \frac{1}{\mu_{sr}}$$

Одной из основных причин квазинасыщения является насыщение скорости носителей, вызываемое деградацией  $\mu$  в сильном электрическом поле. Для учета деградации подвижности в электрическом поле используется модель Канали (*Canali*), согласно которой:

$$\mu_{E\parallel} = \frac{(\alpha+1)\mu_{low}}{\alpha + \left[1 + \left(\frac{(\alpha+1)\mu_{low}F_{hfs}}{V_{sat}}\right)^{\beta}\right]^{1/\beta}},$$

где:  $\beta = \beta_0 \left(\frac{T}{300}\right)^{\beta \exp}$  – коэффициент, зависящий от температуры *T*;  $v_{sat} = v_{sat,0} \left(\frac{300}{T}\right)^{v \exp}$  – скорость насыщения носителей заряд;  $F_{hfs}$  – движущая сила, соответствующая градиенту квазиуровней Ферми:  $F_{hfs} = |\nabla \Phi|$ ;  $\mu_{low}$  – подвижность

носителей при низком значении напряженности электрического поля;  $\alpha$ ,  $\nu_{sat,0}$ ,  $\gamma$ ,  $\beta_0$ ,  $\beta_{exp}$  – константы модели.

<u>В третьей главе</u> проведен анализ влияния конструктивных особенностей различных элементов CB4 LDMOS-транзистора на проявление квазинасыщения выходной и переходной BAX при помощи моделей, описанных в главе 2. Проводится поиск путей оптимизации LDMOS-структуры с целью минимизации эффекта квазинасыщения BAX.

Влияние конструктивно-технологических параметров СВЧ LDMOS-

транзистора на степень выраженности квазинасыщения переходной и выходной ВАХ оценивается по абсолютному  $\Delta I_{D20-40}$  и относительному  $\Delta I_{D20-40}/I_{D20}$  приращению тока стока, измеряемых на выходной ВАХ (рис. 3). Параметры  $\Delta I_{D20-40}$  и  $\Delta I_{D20-40}/I_{D20}$  рассчитываются по формулам:

$$I_{D20-40} = I_D (U_D = 40 \text{ B}) - I_D (U_D = 20 \text{ B});$$
  
$$I_{D20-40} / I_{D20} = \frac{I_D (U_D = 40 \text{ B}) - I_D (U_D = 20 \text{ B})}{I_D (U_D = 20 \text{ B})}$$

Данный критерий позволяет оценить отклонение ВАХ от идеального насыщения (полное отсутствие зависимости тока стока от напряжения на стоке). Для транзистора с идеальным насыщением  $\Delta I_{D20-40} = 0$  и, соответственно, чем значение  $\Delta I_{D20-40}$  больше, тем сильнее выражено квазинасыщение. Выбор точки  $U_D = 20$  В обусловлен тем, что при данном напряжении ВАХ транзистора без учета эффекта квазинасыщения гарантированно достигает идеального насыщения. Точка  $U_D = 40$  В выбрана из соображений удобства. Параметр  $\Delta I_{D20-40}/I_{D20}$  позволяет сравнивать выраженность квазинасыщения при разных уровнях тока стока и, соответственно, уровня напряжения на затворе  $U_G$ .



Рис. 3 – Выходная ВАХ мощного СВЧ LDMOS-транзистора

Исходя из анализа зависимости выраженности квазинасыщения выходной и переходной ВАХ от различных конструктивно-технологических параметров, определено, что наибольшее влияние на выраженность квазинасыщения оказывают параметры полевого электрода (ПЭ) и LDD-области. На рисунках 4а и 46 приведены переходные ВАХ при разной поверхностной концентрации примеси в LDD-области и длине ПЭ соответственно. Влияние указанных параметров на квазинасыщение выходной ВАХ можно оценить по зависимостям  $\Delta I_{D20.40}$  и  $\Delta I_{D20.40}/I_{D20}$  от напряжения на затворе, приведенным на рисунках 4в, 4г, 4д, 4е.

На основе этих данных был проведен поиск оптимальной с точки зрения выраженность квазинасыщения конструкции. Сравнение вариантов конструкции СВЧ LDMOS-транзистора по степени выраженности квазинасыщения выходной ВАХ приведено в таблице 1.



Рис. 4 – Влияние параметров LDMOS-транзистора на квазинасыщение ВАХ: *а* – концентрации примеси в LDD-области на переходную ВАХ; *б* – длины ПЭ на переходную ВАХ; *в* – концентрации примеси в LDD-области на Δ*I*<sub>D20-40</sub>; *г* – длины ПЭ на Δ*I*<sub>D20-40</sub>; *д* – концентрации примеси в LDD-области на Δ*I*<sub>D20-40</sub>/*I*<sub>D20</sub>; *е* – длины ПЭ на Δ*I*<sub>D20-40</sub>/*I*<sub>D20</sub>

#### Таблица 1

# Степень выраженности квазинасыщения выходной ВАХ для разных вариантов конструкции LDMOS-структуры

| № | Описание                                                                | $U_G, \mathbf{B}$ | ⊿ <i>I</i> <sub>D20-40</sub> ,<br>A | $\Delta I_{D20-40} / I_{D20}$ | Вид структуры       |
|---|-------------------------------------------------------------------------|-------------------|-------------------------------------|-------------------------------|---------------------|
|   | С двух-<br>уровневым ПЭ                                                 | 4                 | 0,886                               | 0,1189                        |                     |
|   |                                                                         | 6                 | 0,743                               | 0,0423                        |                     |
| 1 |                                                                         | 8                 | 0,840                               | 0,0304                        | LDD-область         |
|   |                                                                         | 10                | 2,941                               | 0,0860                        |                     |
|   |                                                                         | 12                | 4,625                               | 0,1306                        |                     |
|   |                                                                         | 4                 | 0,749                               | 0,1140                        |                     |
|   | С лвух-                                                                 | 6                 | 0,652                               | 0,0393                        |                     |
| 2 | уровневым ПЭ и                                                          | 8                 | 0,820                               | 0,0309                        | SDD LDD-область     |
|   | SDD-областью                                                            | 10                | 2,795                               | 0,0864                        |                     |
|   |                                                                         | 12                | 3,892                               | 0,1164                        |                     |
|   |                                                                         | 4                 | 0,885                               | 0,1187                        |                     |
|   | С лвух-                                                                 | 6                 | 0,739                               | 0,0420                        |                     |
| 3 | уровневым ПЭ и                                                          | 8                 | 0,819                               | 0,0296                        | LDD-область (HDD    |
|   | HDD-областью                                                            | 10                | 2,791                               | 0,0810                        |                     |
|   |                                                                         | 12                | 4,499                               | 0,1257                        |                     |
|   | С двух-<br>уровневым ПЭ и<br>HDD-областью<br>(основная доза<br>снижена) | 4                 | 0,730                               | 0,1024                        |                     |
|   |                                                                         | 6                 | 0,616                               | 0,0358                        |                     |
| 4 |                                                                         | 8                 | 0,804                               | 0,0297                        | LDD-область HDD     |
|   |                                                                         | 10                | 3,060                               | 0,0935                        |                     |
|   |                                                                         | 12                | 4,187                               | 0,1246                        |                     |
| 5 | С двух-<br>уровневым ПЭ,<br>SDD- и HDD-<br>областью                     | 4                 | 0,748                               | 0,1138                        |                     |
|   |                                                                         | 6                 | 0,647                               | 0,0389                        |                     |
|   |                                                                         | 8                 | 0,793                               | 0,0298                        | SDD LDD-область HDD |
|   |                                                                         | 10                | 2,667                               | 0,0817                        |                     |
|   |                                                                         | 12                | 3,813                               | 0,1127                        |                     |

Выраженность квазинасыщения оценивалась при пяти различных уровнях напряжения на затворе:  $U_G = 4$  В – начало линейного участка переходной ВАХ,  $U_G = 6$  В – середина линейного участка,  $U_G = 8$  В – конец линейного участка,  $U_G = 10$  В – переход к насыщению переходной ВАХ,  $U_G = 12$  В – полное насыщение. Все варианты характеризуются одинаковым уровнем напряжения пробоя сток-исток  $U_{npob}$  и близким значением тока насыщения.

Выбор той или иной конструкции LDMOS транзисторного кристалла может зависеть от специфики режима работы транзистора, а также требований к усилителю на его основе. Но в качестве общего решения наиболее эффективной является конструкция варианта 4, включающая в себя двухуровневый полевой электрод и формирование в LDD-области участка с повышенной концентрацией у границы  $n^+$ -стока. Концентрация примеси в LDD-области снижена относительно конструкция обеспечивает стандартной. Эта рекордное ослабление квазинасыщения при низких  $U_G$ , ослабление на уровне прочих вариантов на конце линейного участка переходной ВАХ и умеренное ослабление при ее насыщении. Также конструкция позволяет обеспечить улучшение прочих такая LDMOS-транзистора (1-4)%. Недостатком электропараметров на этой конструкции является необходимость более тонкой настройки всех параметров структуры.

<u>Четвертая глава</u> посвящена описанию транзисторного кристалла, разработанного при учете сведений о квазинасыщении переходных и выходных ВАХ, полученных при моделировании. В качестве основы конструкции для нового кристалла послужил вариант 4, описанный в главе 3 данной работы.

были изготовлены две партии приборов. Лля анализа В первой использовались транзисторные кристаллы, выполненные по усовершенствованной технологии (в дальнейшем «новая конструкция»), во второй – кристаллы предыдущего поколения (в дальнейшем «базовая конструкция»). Прибор включает в себя только один транзисторный кристалл без цепей согласования, корпуса при изготовлении обеих партий были идентичны. Сравнение переходных ВАХ изготовленных CBU LDMOS-транзисторов новой и базовой конструкции приведено на рисунке 5.



Рис. 5 – Сравнение переходных ВАХ СВЧ LDMOS-транзисторов с кристаллами новой и базовой конструкции

Как видно из рисунка 5, у LDMOS-транзистора, изготовленного с использованием кристалла новой конструкции, насыщение характеристики выражено более резко. Также возросли крутизна на линейном участке и ток насыщения. Таким образом, можно сделать вывод, что квазинасыщение переходной ВАХ в новой конструкции было существенно подавлено.

Семейства выходных ВАХ LDMOS-транзисторов, изготовленных с использованием кристаллов базовой и новой разработок, продемонстрированы на

рисунке 6. Значения напряжения на затворе при построении выходных ВАХ выбирались одинаковыми по положению на переходной ВАХ. Точка T0 находится на предпороговом участке, T1 – в начале линейного участка, T2 лежит на середине линейного участка, T3 находится на переходе линейного участка в насыщение, T4 – на участке полного насыщения переходной ВАХ.



Рис. 6 – Семейства выходных ВАХ СВЧ LDMOS-транзисторов с кристаллом: *а* – базовой конструкции; *б* – новой конструкции

В таблице 2 приведены данные по абсолютным  $\Delta I_{D8-10}$  и относительным  $\Delta I_{D8-10}/I_{D8}$  приращениям токов стока, рассчитанные по ВАХ, приведенным на рисунке 6. Для сравнения в таблице 2 также приведены значения  $\Delta I_{D8-10}$  и  $\Delta I_{D8-10}/I_{D8}$  для кристалла транзистора BLF188XR производства фирмы Ampleon. Внесенные изменения в базовую конструкцию LDMOS-структуры привели к существенному подавлению эффекта квазинасыщения выходной ВАХ, особенно при напряжениях на затворе, соответствующих линейному участку переходной ВАХ (точки T1 и T2 на рисунке 5). Сравнение с зарубежным аналогом показывает, что достигнутые результаты близки к мировому уровню.

Таблица 2

| Участок           | Базовая конструкция           |                           | Новая кон                      | нструкция                    | BLF188XR                       |                           |
|-------------------|-------------------------------|---------------------------|--------------------------------|------------------------------|--------------------------------|---------------------------|
| переходной<br>BAX | <i>⊿I<sub>D8-10</sub></i> , A | $\Delta I_{D8-10}/I_{D8}$ | $\Delta I_{D8-10}, \mathrm{A}$ | $\varDelta I_{D8-10}/I_{D8}$ | $\Delta I_{D8-10}, \mathrm{A}$ | $\Delta I_{D8-10}/I_{D8}$ |
| T1                | 0,482                         | 0,1650                    | 0,074                          | 0,0205                       | 0,087                          | 0,0347                    |
| T2                | 0,678                         | 0,0379                    | 0,111                          | 0,0051                       | 0,159                          | 0,0129                    |
| Т3                | 1,749                         | 0,0606                    | 1,649                          | 0,0461                       | 2,410                          | 0,0718                    |
| Τ4                | 2,455                         | 0,0795                    | 2,075                          | 0,0545                       | 3,788                          | 0,1098                    |

Степень выраженности квазинасыщения исследуемых кристаллов

LDMOS-Сравнение значений электрических параметров средних транзисторов, изготовленных с использованием кристаллов базовой и новой приведено конструкции, В таблице 3. Удалось улучшить все основные электрические параметры, за исключением межэлектродных ёмкостей. Повышение дозы легирование LDD-области позволило снизить R<sub>CH</sub> и увеличить  $I_{D hac}$ . В то же время двухуровневый ПЭ дал возможность не только нивелировать влияние повышения дозы легирования на  $U_{npob}$ , но и добиться его повышения. Рост крутизны *S* обусловлен уменьшением толщины подзатворного диэлектрика.

Таблица 3

| Кристалл            | <i>R</i> <sub><i>СИ</i></sub> , Ом | <i>S</i> , См | $U_{npo\delta}, \mathbf{B}$ | $I_{D \text{ hac}}, A$ | <i>С<sub>вх</sub></i> , пФ | $C_{npox},$ пФ | $C_{\rm вых},$ пФ |
|---------------------|------------------------------------|---------------|-----------------------------|------------------------|----------------------------|----------------|-------------------|
| Новая конструкция   | 0,120                              | 9,6           | 118                         | 42,2                   | 121,1                      | 2,03           | 68,2              |
| Базовая конструкция | 0,152                              | 6,5           | 100                         | 33,7                   | 101,2                      | 0,60           | 60,7              |

Электрические параметры испытываемых LDMOS-транзисторов

Сравнение средних значений энергетических параметров LDMOSтранзисторов, изготовленных с использованием кристаллов базовой и новой конструкций, приведено в таблице 4. Измерения энергетических параметров приборов проводилось по методу согласованной нагрузки при следующем режиме измерения: напряжение питания 50 В, тестовая частота 860 МГц, длительность импульса  $\tau_{\mu}$  = 300 мкс, скважность Q = 10.

Из приведенных данных можно сделать вывод, что внедрение описанных усовершенствований позволило: повысить показатель отношения максимальной выходной мощности к периметру затвора; повысить отношение напряжения пробоя сток-исток к сопротивлению сток-исток в открытом состоянии; поднять коэффициенты полезного действия  $\eta_C$  и усиления по мощности  $K_{yp}$ .

Таблица 4

| Кристалл            | <i>Р<sub>ВХИ</sub></i> , дБм | <i>Р<sub>ВЫХ И</sub></i> , Вт | $K_{YP}$ , дБ | $\eta_C$ , % |
|---------------------|------------------------------|-------------------------------|---------------|--------------|
| Новая конструкция   | 38                           | 260                           | 16,1          | 58,4         |
|                     | 40                           | 352                           | 15,5          | 64,3         |
|                     | 42                           | 412                           | 14,1          | 64,1         |
| Базовая конструкция | 38                           | 151                           | 13,8          | 46,4         |
|                     | 40                           | 198                           | 13,0          | 51,0         |
|                     | 42                           | 198                           | 11,0          | 50,4         |

Энергетические параметры испытываемых LDMOS-транзисторов

На основе разработанных кристаллов были собраны транзисторы 2П9120БС. Внешний вид незагерметизированного транзистора 2П9120БС приведен на рисунке 7.



Рис. 7 – Общий вид транзистора, собранного из кристаллов новой конструкции

Энергетические параметры собранных приборов были измерены в тестовых усилителях мощности на частоте 500 МГц и 230 МГц. Показанные на испытаниях параметры полностью удовлетворяют ТУ на 2П9120БС, в связи с чем было принято решение внести в программу повышения качества изделий АО «НИИЭТ» на 2020 год пункт о переводе транзисторов 2П9120БС на кристалл новой конструкции.

Это позволяет говорить о том, что новая конструкция СВЧ LDMOS транзисторных кристаллов существенно превосходит существующую и может быть применена для модернизации всей номенклатуры 50-ти вольтовых LDMOS-транзисторов разработки АО «НИИЭТ».

В заключении приведены основные результаты работы.

1. Максимально приближенная к предельному насыщению выходная BAX LDMOS-транзисторов достигается при максимально равномерном распределении напряжённости электрического поля по длине LDD-области.

2. Согласно проведенному моделированию LDMOS транзисторной структуры в САПР Sentaurus TCAD, наибольшим влиянием на степень выраженности эффекта квазинасыщения среди всех конструктивно-технологических параметров LDMOS транзисторных кристаллов оказывают конструкция и длина перекрытия полевого электрода, концентрация примеси и профиль ее распределения в LDDобласти.

3. Наиболее перспективной конструкцией LDMOS транзисторного кристалла с точки зрения снижения эффекта квазинсыщения является конструкция с двойным полевым электродом и HDD-участком у стокового края LDD-области при снижении концентрации примеси в самой LDD-области на (5 – 10)% относительно концентрации, обеспечивающей максимальное напряжение пробоя стокисток в случае равномерно легированной LDD-области.

4. Полученные данные о механизме квазинасыщения ВАХ и способах ослабления его проявления были учтены при разработке транзисторного кристалла нового поколения. Итогом стало резкое снижение степени выраженности квазинасыщения по сравнению с кристаллами прошлого поколения и кристаллом зарубежного производства. Можно констатировать, что достигнутые результаты по минимизации квазинасыщения соответствуют мировому уровню.

5. СВЧ-транзистор на основе разработанных кристаллов характеризуется лучшими электрическими и энергетическими параметрами по сравнению с приборами предыдущего поколения. В частности: меньшим на 20 % сопротивлением сток-исток в открытом состоянии; большей на 50 % крутизной переходной ВАХ; большим на 25 % током стока насыщения; большей в 1,7 раза выходной импульсной мощностью при неизменной входной мощности; большим на 2,3 дБ максимальным значением коэффициента усиления по мощности; большим на 15 % максимальным значением коэффициента полезного действия стока.

6. Новая технология создания СВЧ LDMOS транзисторных кристаллов существенно превосходит существующую и может быть применена для модернизации всей номенклатуры 50 вольтовых LDMOS-транзисторов разработки АО «НИИЭТ».

Автор выражает благодарность сотрудникам АО «Научноисследовательский институт электронной техники» за оказание помощи в проведении экспериментов.

# Основные результаты диссертации опубликованы в следующих работах:

#### Публикации в изданиях, рекомендованных ВАК РФ

- Насыщение передаточной вольт-амперной характеристики мощных СВЧ LDMOS-транзисторов / Р. П. Алексеев, А. Н. Цоцорин, Е. Н. Бормонтов, Г. В. Быкадорова. // Электронная техника. Серия 1: СВЧ-техника. – 2019. – №4. – С. 6-14.
- Механизм насыщения выходной вольт-амперной характеристики мощных СВЧ LDMOS-транзисторов / Р. П. Алексеев, А. Н. Цоцорин, Е. Н. Бормонтов, Г. В. Быкадорова. // Электронная техника. Серия 1: СВЧ-техника. 2019. №4. С. 15-23.
- 3. Алексеев Р. П. Мощные СВЧ LDMOS-транзисторы для рабочих частот до 3 ГГц / Р. П. Алексеев, А. Н. Цоцорин, М. И. Черных. // Электроника: Наука, технология, бизнес. – 2020. – № 4. – С. 98-101.
- Подавление эффекта квазинасыщения вольт-амперных характеристик мощных сверхвысокочастотных латеральных транзисторов / Р. П. Алексеев, М. И. Черных, А. Н. Цоцорин, И. В. Семейкин, Г. В. Быкадорова. // Физика и техника полупроводников. – 2021. – Т. 55. – Вып. 8. – С. 689-692.

### Свидетельства РФ

- 5. Цоцорин А. Н. Топология 50-ваттной СВЧ линейной LDMOS транзисторной L-диапазона пятиуровневой системой структуры c металлизации и напряжением питания 50 В (2П9133В): свидетельство о государственной регистрации топологии интегральной микросхемы № 2017630162 / А. Н. Цоцорин, М. И.Черных, Р. П. Алексеев, В. И. Дикарев; Правообладатель Российская Федерация, ОТ имени которой выступает Министерство промышленности и торговли Российской Федерации. - Москва, 2017. -(заявка № 2017630099, дата поступления 25.09.2017 г., дата регистрации 20.11.2017 г.).
- 6. Цоцорин А. Н. Топология 13-ваттной СВЧ линейной LDMOS транзисторной структуры L-диапазона пятиуровневой системой металлизации с И напряжением питания 50 В (2П9133А): свидетельство о государственной регистрации топологии интегральной микросхемы № 2017630163 / А. Н. Цоцорин, М. И.Черных, Р. П. Алексеев, В. И. Дикарев; Правообладатель выступает Российская Федерация, ОТ имени которой Министерство промышленности и торговли Российской Федерации. - Москва, 2017. -(заявка № 2017630100, дата поступления 25.09.2017 г., дата регистрации 20.11.2017 г.).

7. Черных М.И. Сверхвысокочастотная LDMOS транзисторная структура с выходной мощностью 300 Вт при напряжении питания 50 В, предназначенная для работы в диапазоне частот от 0,1 ГГц до 2 ГГц в импульсном режиме: государственной регистрации топологии интегральной свидетельство о микросхемы № 2021630075 / М. И. Черных, А. Н. Цоцорин, Р. П. Алексеев; Правообладатель Акционерное общество «Научно-исследовательский институт электронной техники» (АО «НИИЭТ»). - Москва, 2021. - (заявка № 20211630069. дата поступления 25.05.2021 Г., дата регистрации 31.05.2021 г.).

#### Статьи и материалы конференций

- Влияние на электрофизические характеристики СВЧ LDMOS транзисторов конструктивно-технологических параметров стоковых LDD областей / Р. П. Алексеев, Е. Н. Бормонтов, В. И. Дикарев, В. А. Кожевников, А. Н. Цоцорин. // Радиолокация, навигация, связь: 22-я Международная научно-техническая конференция. – Воронеж, 2016. – С. 409-417.
- 9. Влияние полевого электрода на электрофизические характеристики СВЧ LDMOS-транзисторов / Р. П. Алексеев, Г. В. Быкадорова, В. К. Лановой, Е. О. Ледовская, М. А. Кондрашин. // Наука сегодня: реальность и перспективы: материалы международной научно-практической конференции. Вологда, 2017. С. 24-26.
- 10.Приборно-технологическое моделирование LDMOS-структур с р-карманом в призатворном участке N-LDD-области стока / Р. П. Алексеев, Г. В. Быкадорова, В. К. Лановой, Е. О. Ледовская. // Твердотельная электроника, микроэлектроника и наноэлектроника: межвузовский сборник научных трудов. Воронеж, 2018. Вып. 17. С. 31-35.
- 11.Приборно-технологическое моделирование LDMOS-транзисторов с нелинейным распределением примеси LDD-области / Р. П. Алексеев, Е. Н. Бормонтов, Г. В. Быкадорова, А. Н. Цоцорин. // Радиолокация, навигация, связь: 24-я Международная научно-техническая конференция. – Воронеж, 2018. – С. 257-264.
- 12.Приборно-технологическое проектирование LDMOS-транзисторов с отрицательным градиентом примеси LDD-области / Р. П. Алексеев, Е. Н. Бормонтов, Г. В. Быкадорова, А. Н. Цоцорин. // Физико-математическое моделирование систем : межвузовский сборник научных трудов. Воронеж, 2018. Вып. С. 3-8.
- 13.Алексеев Р. П. Моделирование технологии СВЧ LDMOS-транзисторов с нелинейным распределением примеси в стоковой LDD-области / Р. П. Алексеев, Г. В. Быкадорова, Е. Н. Бормонтов. // Энергия-XXI век. 2016. № 1. С. 68-83.
- 14. Алексеев Р. П. Моделирование влияния режимов ионной имплантации и диффузионной разгонки канальной области на пороговое напряжение мощных СВЧ LDMOS транзисторов в среде приборно-технологической САПР TCAD /

**Р. П. Алексеев**, Г. В. Быкадорова, В. А. Кожевников. // Энергия-XXI век. – 2015. – №1. – С. 79-89.

- 15.Алексеев Р. П. Физико-технологическое проектирование LDMOS-структур с отрицательным градиентом примеси LDD-области / Р. П. Алексеев, Г. В. Быкадорова, А. М. Гаврилова. // Математика. Компьютер. Образование : тезисы 25-й международная конференции: симпозиум с международным участием. Москва-Ижевск, 2018. Вып. 25. С. 243.
- 16. Алексеев Р. П. Моделирование в среде приборно-технологической САПР TCAD влияния на выходные параметры мощных LDMOS структур режимов канальной области Р. П. Алексеев, создания Г. В. Быкадорова, / В. А. Кожевников. Математика. Компьютер. Образование: // тезисы международной школы-конференции "Биофизика сложных систем: анализ экспериментальных данных и моделирование процессов". – Москва-Ижевск, 2015. – Вып. 22. – С. 210.
- 17. Алексеев Р. П. Моделирование влияния технологии формирования канальной области на выходные вольтамперные характеристики мощных СВЧ LDMOS транзисторов / Р. П. Алексеев, Г. В. Быкадорова, А. Ю. Ткачев. // Энергия-XXI век. 2015. №3 (91). С. 102-107.
- 18. Моделирование влияния на выходные параметры мощных LDMOS структур режимов создания LDD области / Р. П. Алексеев, Г. В. Быкадорова, К. Г. Пономарев, В. В. Фадеев. // Математика. Компьютер. Образование: тезисы 23-й Международной конференции. Москва-Дубна, 2016. Вып. 23. С. 188.
- 19. Алексеев Р. П. Исследование в среде приборно-технологической САПР зависимости порогового напряжения от режимов создания канальной области мощных СВЧ LDMOS транзисторов / Р. П. Алексеев, А. В. Калашников. // Микроэлектроника и информатика 2015: тезисы 22-й Всероссийской межвузовской научно-технической конференции студентов и аспирантов. Москва, 2015. С. 68.

Подписано в печать 05.03.2024 г. Формат 60х84/16. Бумага для множительных аппаратов Усл. печ. л. 1,0. Тираж 80 экз. Заказ № \_\_\_\_\_

ФГБОУ ВО «Воронежский государственный технический университет» 394026 Воронеж, Московский просп., 14