

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГТУ», ВГТУ)

Система менеджмента качества

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММАМ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ

«ФИЗИКА И АСТРОНОМИЯ»

(направление подготовки 03.06.01)

«ТЕОРЕТИЧЕСКАЯ ФИЗИКА»

(направленность 01.04.02)

ΦΓΕΟΥ ΒΟ «ΒΓΤΥ», ΒΓΤΥ

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММЕ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕОРЕТИЧЕСКАЯ ФИЗИКА»

Программа составлена в соответствии с требованиями ФГОС ВО (по программам магистратуры и специалитета)

I. Перечень элементов содержания, проверяемых на вступительном испытании по теоретической физике

- 1. Принцип наименьшего действия. Уравнения Эйлера-Лагранжа в механике.
- 2. Гамильтонова механика.
- 3. Канонические преобразования.
- 4. Теорема Нетер и законы сохранения.
- 5. Движение частицы в кулоновском поле притяжения и отталкивания.
- 6. Малые колебания: свободные и вынужденные.
- 7. Пространство и время в СТО.
- 8. Законы динамики СТО.
- 9. Уравнения Максвелла.
- 10. Тензор энергии-импульса электромагнитного поля.
- 11. Электромагнитные волны.
- 12. Излучение диполя.
- 13. Поле движущейся заряженной частицы.
- 14. Тормозное излучение в кулоновском поле.
- 15. Движение релятивистской частицы в поле плоской электромагнитной волны.
- 16. Законы термодинамики.
- 17. Распределения Гиббса.
- 18. Распределение Больцмана-Максвелла.
- 19. Распределение Бозе-Эйнштейна.
- 20. Распределение Ферми-Дирака.
- 21. Распределение Планка и излучение абсолютно черного тела.
- 22. Уравнение Больцмана и закон возрастания энтропии.
- 23. Уравнение Фоккера-Планка и его решения.
- 24. Волновая функция и ее свойства.
- 25. Уравнение Шредингера и его решение для атома водорода.
- 26. Стационарная теория возмущений.
- 27. Нестационарная теория возмущений.
- 28. Рассеяние частиц в борновском приближении.
- 29. Фейнмановский континуальный интеграл: описание движения свободной квантовой частицы.
- 30. Фейнмановский континуальный интеграл: вынужденные колебания гармонического осциллятора.
- 31. Уравнение Дирака и его решение для свободных частиц.
- 32. Вторичное квантование поля бозонов.
- 33. Вторичное квантование электромагнитного поля.
- 34. Вторичное квантование электрон-позитронного поля.

ФГБОУ ВО «ВГТУ», ВГТУ

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММЕ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕОРЕТИЧЕСКАЯ ФИЗИКА»

- 35. Матрица рассеяния в квантовой электродинамике и ряды теории возмущений.
- 36. Тормозное излучение электрона при рассеянии на ядре.
- 37. Возбуждение электронами атомных ядер.

II. Требования к уровню подготовки поступающего

Поступающий должен знать/понимать:

- • основные термины и определения в области теоретической физики;
- • основные законы и явления теоретической физики;
- • общие понятия методов решения задач.

Поступающий должен уметь:

- • делать постановку задачи;
- • правильно преобразовывать используемые уравнения;
- • определять ограничения и условия применения полученных уравнений;
- • использовать аппарат высшей математики для решения задач теоретической физики.

ІІІ. Примерный вариант задания

Поступающий получает 3 (три) вопроса, на которые он должен максимально расширенно письменно ответить.

Вопрос № 1. Уравнения Максвелла.

Вопрос № 2. Распределение Ферми-Дирака.

Вопрос № 3. Уравнение Дирака и его решение для свободных частиц.

IV. Критерии оценивания работ поступающих

Оценивание ответов на каждый вопрос осуществляется по 5-балльной шкале в зависимости от правильности и развернутости (углубленности) ответа (согласно таблице 1). После ответов на все вопросы определяется среднее арифметическое, округленное в большую или меньшую сторону по правилам математики.

Таблица 1

Оценка	Критерий оценки
Отлично	Претендент демонстрирует полное понимание вопроса.
	На вопрос претендентом представлен развернутый
	(углубленный) ответ из нескольких литературных

RAY RESERVED TO SERVED TO

ФГБОУ ВО «ВГТУ», ВГТУ

ПРОГРАММА

ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПРИ ПРИЕМЕ НА ОБУЧЕНИЕ ПО ПРОГРАММЕ ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХ КАДРОВ В АСПИРАНТУРЕ «ТЕОРЕТИЧЕСКАЯ ФИЗИКА»

	источников.
Хорошо	Претендент демонстрирует полное понимание вопроса.
	На вопрос претендентом представлен недостаточно
	развернутый (углубленный) ответ.
Удовлетворительно	Претендент демонстрирует частичное понимание
	вопроса. Претендентом представлен ответ только на часть
	вопроса.
Неудовлетворительно	Претендент демонстрирует непонимание вопроса.
	У претендента нет ответа на вопрос.

V. Рекомендуемая литература

- 1. Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. Т.1-5. М.: Наука, 2006.
- 2. Павленко Ю.Г. Лекции по теоретической механике. М.: Физматлит, 2002.
- 3. Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. М.: Наука, 1981.
- 4. Батыгин В.В., Топтыгин И.Н. Современная электродинамика. М.: НИЦ «Регулярная и хаотическая динамика», 2005.
- 5. Зин-Жюстен Ж. Континуальный интеграл в квантовой механике. М.: Физматлит, 2006.