#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

Воронежский государственный архитектурно-строительный университет

| <i>УТВЕРЖДАЮ</i>   |        |
|--------------------|--------|
| Проректор по науке |        |
| Мищенко В.Я        |        |
| « <u>16</u> » 06   | 2015 г |
|                    |        |

# РАБОЧАЯ ПРОГРАММА

дисциплины

«Материаловедение и ТКМ»

Направление подготовки (специальность) 15.06.01 «Машиностроение»

**Профиль** (Специализация) 05.02.10 «Сварка, родственные процессы и технологии», 05.05.04 «Дорожные, строительные и подъемно-транспортные машины»

**Квалификация (степень) выпускника** исследователь, преподавательисследователь

**Нормативный срок обучения** 4 года **Форма обучения** очная

Автор программы Рубцова Е.Г., к.т.н., доц.



| Программа обсу | ждена на заседании кафедры «Металлические конструкции и сварка в |
|----------------|------------------------------------------------------------------|
| строительстве» | « <u>//</u> » <u></u>                                            |
| Зав. кафедрой  | 1/2 1 1 A.C. Орлов                                               |
| оав. кафедрои  | A.C. Ophos                                                       |

#### 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

#### 1.1. Цели дисциплины

Основная цель изучения дисциплины – получение обучающимися знаний о структуре и основных физико-механических свойствах металлических и неметаллических материалов, областях их применения, технологических основах производства, особенностях поведения конструкционных материалов в различных условиях и способах изучения их свойств.

#### 1.2. Задачи освоения дисциплины:

- представление материалов как элементов системы материал конструкция (деталь), обеспечивающих функционирование конструкций (машин) с заданной надежностью и безопасностью;
- изучение способов создания материалов с заданными служебными свойствами, методов переработки и оценки их качества, технологических приемов формирования структуры;
- изучение системы показателей качества материалов и нормативных методов их определения и оценки с использованием современного исследовательского оборудования и статистической обработкой данных.

#### 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина «Материаловедение и ТКМ» относится к вариативной части цикла обязательных дисциплин учебного плана.

Требования к входным знаниям, умениям и компетенциям студента, необходимым для изучения данной дисциплины. Изучение дисциплины «Материаловедение и ТКМ» требует основных знаний, умений и компетенций обучающегося по курсам:

Физика:

Законы термодинамики; свойства газов, жидкостей и кристаллов; диффузионные процессы

Химия:

Химические системы: растворы, катализаторы, полимеры;

Химическая термодинамика и кинетика;

Энергетика химических процессов, химическое и фазовое равновесие, скорость реакции и методы ее регулирования;

Реакционная способность вещества;

Периодическая система элементов, кислотно-основные и окислительновосстановительные свойства веществ, химическая связь;

Химическая идентификация;

Физико-химический и физический анализ.

Механика:

Деформации и напряжения в материалах, разрушение материалов;

Механические свойства материалов и методы их определения;

Количественные характеристики прочности, пластичности, упругости, твердости, выносливости.

(указывается цикл, к которому относится дисциплина; формулируются требования к входным знаниям, умениям и компетенциям студента, необходимым для ее изучения; определяются дисциплины, для которых данная дисциплина является предшествующей)

Дисциплина «Материаловедение и ТКМ» является предшествующей для дисциплин «Сварка, родственные процессы и технологии», «Технология и оборудование сварки плавлением», «Металлические конструкции».

#### 3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Процесс изучения дисциплины «Материаловедение и ТКМ» направлен на формирование следующих компетенций:

- способностью к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);
- способность научно обоснованно оценивать новые решения в области построения и моделирования машин, приводов, оборудования, технологических систем и специализированного машиностроительного оборудования, а также средств технологического оснащения производства (ОПК-1);
- способностью формулировать и решать нетиповые задачи математического, физического, конструкторского, технологического, электротехнического характера при проектировании, изготовлении и эксплуатации новой техники (ОПК-2);
- способность формировать и аргументировано представлять научные гипотезы (ОПК-3);
- способность проявлять инициативу в области научных исследований, в том числе в ситуациях технического и экономического риска, с осознанием меры ответственности за принимаемые решения (ОПК-4);
- способность планировать и проводить экспериментальные исследования с последующим адекватным оцениванием получаемых результатов (ОПК-5);
- способность профессионально излагать результаты своих исследований и представлять их в виде научных публикаций, информационно-аналитических материалов и презентаций (ОПК-6).

В результате изучения дисциплины обучающийся должен:

#### Знать:

- структуры, химические и технологические свойства конструкционных материалов;
- технологические основы производства и применения традиционных материалов и наноматериалов.

#### Уметь:

- осуществлять выбор конструкционных материалов для изготовления строительных конструкций и деталей машин;
- назначать технологии изготовления конструкций и узлов машин.

#### Владеть:

- методами анализа свойств конструкционных материалов;
- методами контроля конструкций и деталей машин.

### 4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Материаловедение и ТКМ» составляет 3 зачетные единицы.

| Вид учебной работы                            | Всего        | 1        |        |   |
|-----------------------------------------------|--------------|----------|--------|---|
|                                               | часов        | 3/-      | 4/-    |   |
| Аудиторные занятия (всего)                    | 20/-         | 10/-     | 10/-   |   |
| В том числе:                                  |              |          |        |   |
| Лекции                                        | 15/-         | 10/-     | 5/-    |   |
| Практические занятия (ПЗ)                     | 5/-          | -/-      | 5/-    | _ |
| Лабораторные работы (ЛР)                      | -/-          | -/-      | -/-    |   |
| Самостоятельная работа (всего)                | 52/-         | 26/-     | 26/-   |   |
| В том числе:                                  |              |          |        |   |
| Курсовой проект                               | -/-          | -/-      | -/-    |   |
| Контрольная работа                            | -/-          | -/-      |        |   |
| Вид промежуточной аттестации (зачет, экзамен) | Зачет, экза- |          | Экза-  |   |
|                                               | мен (36)/-   | Зачет /- | мен    |   |
|                                               |              |          | (36)/- |   |
| Общая трудоемкость час                        | 108/-        | 36/-     | 72/-   |   |
| зач. ед.                                      | 3            | 1        | 2      |   |

*Примечание*: здесь и далее числитель – очная/знаменатель – заочная формы обучения.

# 5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

## 5.1. Содержание разделов дисциплины

| № п/п | 1 ' '                                                     | Содержание раздела                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | дисциплины Физико-химические основы строения материалов   | Материаловедение как научная дисциплина. Структура курса. Связь с другими дисциплинами учебного плана. Атомно-кристаллическое строение металлов и сплавов. Типы кристаллических решеток. Дефекты кристаллического строения и их влияние на свойства металлов.  Кристаллизация металлов. Термодинамические основы процесса кристаллизации. Механизм кристаллизации. Общие закономерности и разновидности процессов кристаллизации. Величина зерна. Модифицирование. Форма кристаллов. Строение                                                                                                                                     |
| 2     | Деформации, разрушение и механические свойства материалов | металлического слитка.  Деформации, разрушение и свойства металлов. Свойства металлов и сплавов. Деформации и напряжения в металлах. Концентраторы напряжений. Влияние дислокаций на процесс пластической деформации. Изменение структуры и свойств металлов при пластической деформации. Наклеп. Влияние нагрева на структуру и свойства деформированного металла. Рекристаллизация. Понятие о горячей и холодной деформации. Разрушение металлов. Классификация нагрузок. Механизмы разрушения. Виды изломов. Влияние температуры и скорости нагружения на характер разрушения. Хладноломкость. Механические свойства металлов. |

| 2 |                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Элементы теории сплавов. Диаграмма состояния железо-цементит. Структура железоуглеродистых сплавов                                      | Элементы теории сплавов. Основные понятия. Фазы и структуры в металлических сплавах. Диаграммы состояния двойных систем. Основные типы. Правило фаз и отрезков. Связь диаграмм состояния со свойствами сплавов. Железоуглеродистые сплавы. Диаграмма состояния железоуглерод. Компоненты, фазы и структурные составляющие системы железо-углерод. Влияние углерода и постоянных примесей на структуру и свойства сталей. Легирующие элементы и их влияние на полиморфные превращения в железе, на свойства феррита и аустенита, на образование и состав карбидной фазы, на температуру фазовых превращений и состав точек Е и S диаграммы железо-углерод. Структурные классы легированных сталей.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4 | Теория и практика процессов упрочнения сплавов термической, термомеханической, химикотермической обработкой, деформированием (наклепом) | Термическая обработка сталей. Классификация и характеристика основных видов термической обработки. Термическая обработка железоуглеродистых сплавов. Превращения при нагреве сталей.  Изотермическое превращение переохлажденного аустенита. Перлитное превращение. Особенности мартенситного и бейнитного превращений. Особенности превращения аустенита при непрерывном охлаждении. Влияние углерода и легирующих элементов на распад переохлажденного аустенита. Превращения при отпуске закаленной стали. Старение сталей. Технология термической обработки сталей. Основные виды термической обработки стали. Отжиг I и II рода и их разновидности. Закалка стали. Закаливаемость и прокаливаемость стали. Способы закалки и их применение. Отпуск стали. Классификация и применение разновидностей отпуска. Термомеханическая обработка.  Поверхностное упрочнение металлов и сплавов. Поверхностная закалка стали. Индукционная, лазерная, электроннолучевая, плазменная и газоплазменная закалка.  Химико-термическая обработка сталей. Физические основы и разновидности. Цементация, азотирование, нитроцементация и цианирование. Диффузионное насыщение.  Поверхностное упрочнение наклепом. |
| 5 | Конструкционные материалы                                                                                                               | Классификация и маркировка сталей. Конструкционные стали. Требования, предъявляемые к конструкционным сталям. Углеродистые и низколегированные конструкционные стали для машиностроения и строительства. Теплостойкие стали. Классификация и маркировка чугунов. Структура, способы получения и области применения. Алюминий и его сплавы. Деформируемые и литейные сплавы. Маркировка. Свойства. Области применения. Медь и медные сплавы. Латуни, бронзы, медно-никелевые сплавы. Маркировка, состав, структура, свойства и области применения различных групп медных сплавов. Неметаллические материалы. Полимерные материалы. Композиционные и наноматериалы.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6 | Производство и технология обработки конструкционных материалов                                                                          | Структура и продукция металлургического производства. Материалы для производства металлов и сплавов. Современные способы получения стали. Способы повышения качества. Технико-экономические показатели. Основы технологии изготовления литых деталей. Технологическая последовательность изготовления литых деталей. Литейные свойства сплавов. Специальные методы литья. Технико-экономические характеристики способов и область примене-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|  | ния. Физическая и технологическая сущность процессов сварки и резки металлов. Образование соединений при сварке. Классификация способов сварки. Способы резки металлов и сплавов. Тепловые процессы при сварке плавлением. Основные характеристики теплового сварочного источника. Термический цикл при сварке. Наплавка. Виды дуговой сварки. Технико-экономические критерии оценки дуговых видов сварки. Виды контактной сварки, газовая сварка и резка. Дефекты и контроль качества сварных соединений. Виды контроля. Разрушающие и неразрушающие методы контроля. Техника безопасности и пожарная безопасность при производстве сварочных работ в заводских условиях и на строительномонтажных плошалках |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | монтажных площадках.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

# 5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

| №<br>п/<br>п | Наименование обеспечиваемых (последующих) дисциплин |   | L |   |   | ны, необходи<br>ледующих) ди<br>5 | - |
|--------------|-----------------------------------------------------|---|---|---|---|-----------------------------------|---|
| 1.           | «Сварка, родственные процессы и технологии»         | + | + | + | + | +                                 | + |
| 2.           | «Технология и оборудование сварки плавлениеем»      | + | + | + | + | +                                 | + |
| 3.           | «Металлические конст-<br>рукции».                   | + | + | + | + | +                                 | + |

#### 5.3. Разделы дисциплин и виды занятий

| <b>№</b><br>п/п | Наименование раздела дисциплины                                                                                                          | Лекц. | Практ.<br>зан. | Лаб.<br>зан. | СРС | Всего час. |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--------------|-----|------------|
| 1.              | Физико-химические основы строе-<br>ния материалов                                                                                        | 1     | -              | -            | 6   | 7          |
| 2.              | Деформации, разрушение и механи-<br>ческие свойства материалов                                                                           | 2     | -              |              | 6   | 8          |
| 3.              | Элементы теории сплавов. Диаграмма состояния железо-цементит. Структура железоуглеродистых сплавов                                       | 2     | -              |              | 6   | 8          |
| 4.              | Теория и практика процессов упрочнения сплавов термической, термомеханической, химико-термической обработкой, деформированием (наклепом) | 2     | ı              |              | 8   | 10         |
| 5.              | Конструкционные материалы                                                                                                                | 4     | -              |              | 14  | 18         |
| 6.              | Производство и технология обработ-ки конструкционных материалов                                                                          | 4     | 5              |              | 12  | 21         |

#### 5.4. Практические занятия

| <b>№</b>  | № раздела  |                                   | Трудо-  |
|-----------|------------|-----------------------------------|---------|
| $\Pi/\Pi$ | дисциплины | Наименование практических работ   | емкость |
|           |            |                                   | (час)   |
| 1.        | 6.         | Безопасность сварочных работ      | 1       |
| 2.        | 6.         | Ручная электродуговая сварка      | 1       |
| 3.        | 6.         | Автоматическая сварка под флюсом  | 1       |
| 4.        | 6.         | Газовая сварка металлов и сплавов | 1       |
| 5.        | 6.         | Контактная сварка                 | 1       |

#### 6. ПРИМЕРНАЯ ТЕМАТИКА КУРСОВЫХ ПРОЕКТОВ, КУРСОВЫХ И КОНТРОЛЬНЫХ РАБОТ

Учебным планом дисциплины «Материаловедение и ТКМ» проведение курсовых проектов, курсовых и контрольных работ не предусмотрено.

# 7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

# 7.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

| № п/п | Компетенции (общепрофессиональная – ОПК; профессиональная – ПК) | Форма кон-<br>троля |
|-------|-----------------------------------------------------------------|---------------------|
| 1     | УК-1. Способностью к критическому анализу и оценке современ-    | Зачет (3)           |
| 1     |                                                                 | ` /                 |
|       | ных научных достижений, генерированию новых идей при реше-      | Экзамен (Э)         |
|       | нии исследовательских и практических задач, в том числе в меж-  |                     |
|       | дисциплинарных областях                                         |                     |
| 2     | ОПК-1. Способность научно обоснованно оценивать новые реше-     | Зачет (3)           |
|       | ния в области построения и моделирования машин, приводов,       | Экзамен (Э)         |
|       | оборудования, технологических систем и специализированного      |                     |
|       | машиностроительного оборудования, а также средств технологи-    |                     |
|       | ческого оснащения производства                                  |                     |
| 3     | ОПК-2. Способностью формулировать и решать нетиповые зада-      | Зачет (3)           |
|       | чи математического, физического, конструкторского, технологи-   | Экзамен (Э)         |
|       | ческого, электротехнического характера при проектировании, из-  |                     |
|       | готовлении и эксплуатации новой техники                         |                     |
| 4     | ОПК-3. Способность формировать и аргументировано представ-      | Зачет (3)           |
|       | лять научные гипотезы                                           | Экзамен (Э)         |
| 5     | ОПК-4. Способность проявлять инициативу в области научных       | Зачет (3)           |
|       | исследований, в том числе в ситуациях технического и экономи-   | Экзамен (Э)         |
|       | ческого риска, с осознанием меры ответственности за принимае-   | , , ,               |
|       | мые решения                                                     |                     |
| 6     | ОПК-5. Способность планировать и проводить эксперименталь-      | Зачет (3)           |
|       | ные исследования с последующим адекватным оцениванием по-       | Экзамен (Э)         |

|   | лучаемых результатов                                          |             |
|---|---------------------------------------------------------------|-------------|
| 7 | ОПК-6. Способность профессионально излагать результаты своих  | Зачет (3)   |
|   | исследований и представлять их в виде научных публикаций, ин- | Экзамен (Э) |
|   | формационно-аналитических материалов и презентаций            |             |

# 7.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

| Дескриптор компе- | Показатель оценивания                           | Фо | рма кон | троля |
|-------------------|-------------------------------------------------|----|---------|-------|
| тенции            |                                                 |    | 3       | $\in$ |
|                   |                                                 |    |         |       |
| Знает             | структуры, химические и технологические свойст- |    | +       | +     |
|                   | ва конструкционных материалов; технологические  |    |         |       |
|                   | основы производства и применения традиционных   |    |         |       |
|                   | материалов и наноматериалов (УП-1, ОПК-1,       |    |         |       |
|                   | ОПК-3, ОПК-4, ОПК-5, ОПК-6).                    |    |         |       |
| Умеет             | осуществлять выбор конструкционных материалов   |    | +       | +     |
|                   | для изготовления строительных конструкций и де- |    |         |       |
|                   | талей машин; назначать технологии изготовления  |    |         |       |
|                   | конструкций и узлов машин (УП-1, ОПК-1, ОПК-3,  |    |         |       |
|                   | ОПК-4, ОПК-5, ОПК-6).                           |    |         |       |
| Владеет           | методами анализа свойств конструкционных мате-  |    | +       | +     |
|                   | риалов; методами контроля конструкций и деталей |    |         |       |
|                   | машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5,        |    |         |       |
|                   | ОПК-6).                                         |    |         |       |

#### 7.2.1. І Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний (зачет) оцениваются по двухбалльной шкале с оценками:

- зачтено
- не зачтено

| Дескриптор  | Показатель оценивания                    | Оценка    | Критерий       |
|-------------|------------------------------------------|-----------|----------------|
| компетенции |                                          |           | оценивания     |
| Знает       | структуры, химические и технологические  |           | Обучающийся    |
|             | свойства конструкционных материалов;     |           | демонстрирует  |
|             | технологические основы производства и    |           | значительное   |
|             | применения традиционных материалов и     |           | понимание за-  |
|             | наноматериалов (УП-1, ОПК-1, ОПК-3,      |           | даний. Все     |
|             | ОПК-4, ОПК-5, ОПК-6).                    | «зачтено» | требования,    |
| Умеет       | осуществлять выбор конструкционных ма-   |           | предъявляемые  |
|             | териалов для изготовления строительных   |           | к заданию, вы- |
|             | конструкций и деталей машин; назначать   |           | полнены.       |
|             | технологии изготовления конструкций и    |           |                |
|             | узлов машин (УП-1, ОПК-1, ОПК-3, ОПК-4,  |           |                |
|             | ОПК-5, ОПК-6).                           |           |                |
| Владеет     | методами анализа свойств конструкцион-   |           |                |
|             | ных материалов; методами контроля конст- |           |                |
|             | рукций и деталей машин (УП-1, ОПК-1,     |           |                |
|             | ОПК-3, ОПК-4, ОПК-5, ОПК-6).             |           |                |

| Знает   | структуры, химические и технологические свойства конструкционных материалов; технологические основы производства и применения традиционных материалов и наноматериалов (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).  осуществлять выбор конструкционных ма- | «не зачте-<br>но» | 1. Обучающийся демонстрирует небольшое понимание заданий. В основном, требования, предъявляемые к заданию, не выполне- |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------|
| умеет   | териалов для изготовления строительных конструкций и деталей машин; назначать технологии изготовления конструкций и узлов машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).                                                                                | HU"               | ны. 2. Обучающийся демонстрирует непонимание заданий. 3. У обучающего-                                                 |
| Владеет | методами анализа свойств конструкционных материалов; методами контроля конструкций и деталей машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).                                                                                                             |                   | ся нет ответа. Не было попытки выполнить задание.                                                                      |

#### 7.2.2. II Этап промежуточного контроля знаний

Результаты промежуточного контроля знаний (экзамен) оцениваются по четырех-балльной шкале с оценками:

- «ОТЛИЧНО»
- «хорошо»
- «удовлетворительно»
- «неудовлетворительно»

| Дескриптор  | Показатель оценивания                                                                                                                                                                                            | Оценка   | Критерий                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------|
| компетенции |                                                                                                                                                                                                                  |          | оценивания                                                                |
| Знает       | структуры, химические и технологические свойства конструкционных материалов; технологические основы производства и применения традиционных материалов и машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).         | отлично  | Обучающийся демонстрирует полное понимание заданий. Все требова-          |
| Умеет       | осуществлять выбор конструкционных материалов для изготовления строительных конструкций и деталей машин; назначать технологии изготовления конструкций и узлов машин ((УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6). |          | ния, предъяв-<br>ляемые к зада-<br>нию, выполне-<br>ны                    |
| Владеет     | методами анализа свойств конструкционных материалов; методами контроля конструкций и деталей машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).                                                                    |          |                                                                           |
| Знает       | структуры, химические и технологические свойства конструкционных материалов; технологические основы производства и применения традиционных материалов и машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).         | «хорошо» | Обучающийся демонстрирует значительное понимание заданий. Все требования, |
| Умеет       | осуществлять выбор конструкционных ма-<br>териалов для изготовления строительных                                                                                                                                 | _        | предъявляемые к заданию, вы-                                              |

| Dwares  | конструкций и деталей машин; назначать технологии изготовления конструкций и узлов машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).                                                                                      |            | полнены.                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------|
| Владеет | методами анализа свойств конструкционных материалов; методами контроля конструкций и деталей машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).                                                                            |            |                                                                                                         |
| Знает   | структуры, химические и технологические свойства конструкционных материалов; технологические основы производства и применения традиционных материалов и наноматериалов машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).  | удовлетво- | Обучающийся демонстрирует частичное понимание заданий. Большинство требова-                             |
| Умеет   | осуществлять выбор конструкционных материалов для изготовления строительных конструкций и деталей машин; назначать технологии изготовления конструкций и узлов машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).          | рительно   | ний, предъяв-<br>ляемых к зада-<br>нию, выполне-<br>ны.                                                 |
| Владеет | методами анализа свойств конструкционных материалов; методами контроля конструкций и деталей машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).                                                                            |            |                                                                                                         |
| Знает   | структуры, химические и технологические свойства конструкционных материалов; технологические основы производства и применения традиционных материалов и наноматериалов машин ((УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6). | неудовлет- | 3. Обучающийся демонстрирует небольшое понимание заданий. В основном, требования, предъявляемые к зада- |
| Умеет   | осуществлять выбор конструкционных материалов для изготовления строительных конструкций и деталей машин; назначать технологии изготовления конструкций и узлов машин машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).    | ворительно | нию, не выполнены. 4. Обучающийся демонстрирует непонимание заданий. 3. У обучающегося нет ответа. Не   |
| Владеет | методами анализа свойств конструкционных материалов; методами контроля конструкций и деталей машин (УП-1, ОПК-1, ОПК-3, ОПК-4, ОПК-5, ОПК-6).                                                                            |            | ся нет ответа. Не было попытки выполнить задание.                                                       |

# 7.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и(или) опыта деятельности.

Вопросы для зачета (в тестовой форме)

Атомно-кристаллическое строение и кристаллизация металлов и сплавов 1.Железо и его сплавы принадлежат к следующей группе металлов:

- а) к тугоплавким;
- б) к черным;
- в) к диамагнетикам.
- 2.Один из приведенных ниже сплавов относится к черным:

- а) латунь;
- б) коррозионно-стойкая сталь;
- в) дуралюмин.
- 3. Одним из признаков металлической связи является:
- а) скомпенсированность собственных моментов электронов;
- б) образование кристаллической решетки;
- в) обобществление валентных электронов в объеме всего тела.
- 4. Элементарная кристаллическая ячейка это:
- а) тип кристаллической решетки, характерный для данного химического элемента;
- б) кристаллическая ячейка, содержащая один атом;
- в) минимальный объем, который характеризует особенности строения данного типа кристалла.
- 5. Анизотропией обладают:
- а) монокристаллы;
- б) вещества, обладающие полиморфизмом;
- в) переохлажденные жидкости.
- 6. Явление, заключающееся в неоднородности свойств материала в различных кристаллографических направлениях, называется:
- а) изотропность;
- б) анизотропия;
- в) полиморфизм.
- 7. Дефект, вызванный отсутствием атома в узле кристаллической решетки, называется:
- а) дислокация;
- б) пора;
- в) вакансия.
- 8. Дефекты, к которым относятся вакансии, атомы замещения и атомы внедрения, называются:
- а) точечными;
- б) линейными;
- в) поверхностными.
- 9. Дефекты, которые малы в двух направлениях, а в третьем могут простираться через весь кристалл, называются:
- а) межузельные атомы;
- б) поверхностные дефекты;
- в) дислокации.
- 10. Переход металла из жидкого состояния в твердое называется:
- а) кристаллизацией;
- б) закалкой;
- в) плавлением.
- 11. Кристаллизация складывается из двух элементарных процессов:
- а) охлаждения и образования кристаллов;
- б) зарождения центров кристаллизации и роста кристаллов:
- в) образования молекул и их полимеризации.
- 12. Размер зерен металла зависит от степени переохлаждения его при кристаллизации следующим образом:
- а) чем больше степень переохлаждения, тем крупнее зерно;
- б) размер зерна не зависит от степени переохлаждения;
- в) чем больше степень переохлаждения, тем мельче зерно.
- 13.Процесс искусственного введения в жидкий металл тугоплавких мелких частиц, служащих дополнительными центрами кристаллизации, называется:
- а) модифицированием;
- б) модернизацией;
- в) сублимированием.
- 14.Вещества, которые вводят в расплав с целью регулирования размеров зерен, называют:
- а) пластификаторы;
- б) модификаторы;
- в) катализаторы.
- 15. Существование одного металла в различных кристаллических формах (модификациях) при разных температурах называется,
- а) полиморфизмом;
- б) модифицированием;
- в) анизотропией.

#### Диаграмма состояния системы «железо-цементит»

16. Вещества, полученные сплавлением двух или нескольких компонентов, называются:

- а) смесями:
- б) сплавами;
- в) расплавами.

#### 17. Вещества, образующие систему, называют:

- а) компонентами;
- б) элементами;
- в) фазами.

# 18.Однородная часть системы, отделенная от других частей системы поверхностью раздела, при переходе через которую свойства и структура меняется скачком, называется:

- а) решеткой;
- б) фазой;
- в) диаграммой состояния.

#### 19. Форма, размеры и взаимное расположение фаз в системе это:

- а) структура;
- б) элементарная ячейка;
- в) твердый раствор.

# 20. Механическая смесь, образующаяся в результате одновременной кристаллизации компонентов или твердых растворов из жидкого раствора называется:

- а) эвтектикой;
- б) эвтектоидом;
- в) перитектикой.

#### 21. Механическая смесь, образующаяся при распаде твердого раствора называется:

- а) эвтектикой:
- б) эвтектоидом;
- в) перитектикой.

#### 22. Чистые металлы кристаллизуются [...].

- а) при снижающейся температуре;
- б) при растущей температуре;
- в) при постоянной температуре

#### 23. Эвтектоидное превращение отличается от эвтектического следующим:

- а) принципиальных отличий нет, это однотипные превращения;
- б) при эвтектоидном превращении распадается твердый раствор, при эвтектическом жидкий;
- в) при эвтектоидном превращении возникают промежуточные фазы, при эвтектическом механические смеси.

# 24. Химическое соединение, образующееся между двумя или несколькими металлами, называется:

- а) интерметаллидом;
- б) карбидом;
- в) сульфидом.

#### 25.Основные сплавы системы железо-углерод - это [...]:

- а) техническое железо, стали и чугуны;
- б) силумины и дуралюмины;
- в) бронзы и латуни.

#### 26.Фазы системы железо-углерод:

- а) жидкий расплав, феррит, аустенит, цементит;
- б) феррит, аустенит, ледебурит;
- в) феррит, аустенит, перлит.

#### 27.Структуры системы железо-углерод:

- а) феррит, аустенит, цементит, перлит, ледебурит;
- б) жидкий расплав, феррит, перлит;
- в) жидкий расплав, аустенит, ледебурит.

#### 28. Твердый раствор внедрения углерода в α-железе это:

- а) феррит;
- б) аустенит;
- в) цементит.

#### 29. Твердый раствор внедрения углерода в у-железе это:

- а) феррит;
- б) аустенит;
- в) цементит.

#### 30.Химическое соединение, карбид железа:

- а) цементит;
- б) ледебурит;
- в) аустенит.

#### 31.Кристаллическая решетка α-железа: а) ОЦК; б) ГЦК; в) ГПУ. 32.Кристаллическая решетка у-железа: б) ГЦК; в) ГПУ. 33. Эвтектическая структура системы железо-углерод: а) перлит; б) ледебурит; в) цементит. 34. Эвтектоидная структура системы железо-углерод: а) перлит; б) ледебурит; в) цементит. 35.Механическая смесь (эвтектика) аустенита и цементита, образующаяся из жидкого расплава при 1147°С и при содержании 4,3% С: а) ледебурит; б) перлит; в) феррит. 36.Механическая смесь (эвтектоид) феррита и цементита, образующаяся из аустенита при 727°C при 0,8% С: а) ледебурит; б) перлит; в) графит. 37. Сплавы с содержанием углерода более 2,14%, содержащие ледебурит называют: а) стали; б) чугуны; в) техническое железо. 38. Сплавы с содержанием углерода от 0,02% до 2,14%, содержащие перлит называют: а) стали; б) чугуны; в) техническое железо. 39. Сплавы с содержанием углерода менее 0,02% называют: а) стали; б) чугуны; в) техническое железо. 40. Максимальная растворимость углерода в феррите при 727°С. a) 2,14%; б) 0.02%: в) 4,3%. 41. Максимальная растворимость углерода в аустените при 1147°С. a) 2,14%; б) 0,02%; B) 4,3%. 42. Перлит – это [...]. а) химическое соединение железа с углеродом; б) твердый раствор внедрения углерода в а-железе; в) твердый раствор внедрения углерода в у-железе; г) эвтектоид в железоуглеродистых сплавах; д) эвтектика в белых чугунах. **43.** Ледебурит – это [...]. а) химическое соединение железа с углеродом; б) твердый раствор внедрения углерода в а-железе; в) твердый раствор внедрения углерода в у-железе; г) эвтектоид в железоуглеродистых сплавах; д) эвтектика в белых чугунах.

# Теория и практика процессов упрочнения сплавов термической, термомеханической, химико-термической обработкой, деформированием (наклепом)

44. Процессы теплового воздействия с целью изменения структуры и свойств сплава называются:

- а) термической обработкой;
- б) механической обработкой;
- в) химической обработкой.

#### 45.Основные параметры режима процесса термической обработки:

- а) температура и время;
- б) температура;
- в) время;
- г) скорость нагрева, температура, время, скорость охлаждения.
- 46. Структуры изотермического распада аустенита.
- а) перлит, сорбит, троостит, бейнит;
- б) феррит, аустенит, цементит;
- в) сорбит отпуска, троостит отпуска.
- 47. Термическая обработка, приводящая металл в равновесное состояние называется:
  - а) отжиг;
  - б) закалка;
  - в) отпуск.
  - 48. Термическая обработка, фиксирующая с помощью высокой скорости охлаждения неустойчивое (высокотемпературное) состояние сплава называется:
  - а) отжиг:
  - б) закалка;
  - в) отпуск.
  - 49. Вид термической обработки, целью которого является фиксация при низкой температуре неравновесного состояния:
  - а) отжиг;
  - б) закалка;
  - в) отпуск.
  - 50. Вид термической обработки с нагревом ниже критических температур, ведущий к распаду неравновесных закалочных структур:
  - а) отжиг;
  - б) закалка;
  - в) отпуск.
  - 51. Разновидность отжига с ускоренным охлаждением на воздухе:
  - а) нормализация;
  - б) закалка;
  - в) отпуск.
  - 52. Термическая обработка, при которой возникают зернистые структуры.
  - а) изотермическая закалка;
  - б) полный отжиг;
  - в) среднетемпературный и высокотемпературный отпуск.
  - 53. Неравновесный перенасыщенный твердый раствор внедрения в α-железо:
  - а) мартенсит;
  - б) перлит;
  - в) аустенит.
- 54. Кристаллическая решетка мартенсита.
- а) кубическая;
- б) ГПУ;
- в) тетрагональная;
- г) ГЦК.
- 55. Закалка с высоким отпуском, одновременно повышающая прочность и пластичность стали:
- а) улучшение;
- б) нормализация;
- в) старение.
- 56. Минимальная скорость закалки, при которой аустенит не распадается на ферритоцементитную смесь и превращается в мартенсит:
- а) критическая;
- б) предельная;
- в) оптимальная.
- 57. Способность стали повышать твердость в результате закалки.
- а) закаливаемость;
- б) прокаливаемость;
- в) проводимость.
- 58. Характеризует глубину образования мартенсита в структуре стали при закалке.

- а) закаливаемость;
- б) прокаливаемость;
- в) проводимость.

#### 59. Структура, получаемая при закалке углеродистых сталей:

- а) мартенсит;
- б) перлит;
- в) бейнит.

#### 60. Структуры, получаемые при нормализации углеродистых сталей:

- а) мартенсит и бейнит;
- б) сорбит и троостит;
- в) перлит и ледебурит.

#### 61. Структура, получаемая при изотермической закалке углеродистых сталей:

- а) мартенсит;
- б) бейнит;
- в) перлит.

#### 62. Структура, получаемая при отжиге углеродистых сталей:

- а) перлит;
- б) мартенсит;
- в) ледебурит.

#### 63. Температура низкотемпературного отпуска сталей

- a)600°C;
- б) 150-200 °С;
- в) 300°C.

#### 64. Структура, образующаяся при низкотемпературном отпуске закаленной стали.

- а) тростит отпуска;
- б) мартенсит отпуска;
- в) сорбит отпуска.

#### 65. Температура среднетемпературного отпуска сталей.

- a)600°C;
- б) 150-200 °С;
- в) 350-450 °С.

#### 66. Структура, образующаяся при среднетемпературном отпуске закаленной стали.

- а) тростит отпуска;
- б) мартенсит отпуска;
- в) сорбит отпуска.

#### 67. Температура высокотемпературного отпуска сталей.

- a)300°C;
- б) 150-200 °С;
- в) 550-680°C.

#### 68. Процесс диффузионного насыщения поверхностного слоя стали углеродом:

- а) цементация;
- б) нитроцементация;
- в) азотирование.

#### 69. Процесс диффузионного насыщения поверхностного слоя стали азотом:

- а) цементация;
- б) нитроцементация;
- в) азотирование;
- г) цианирование.

# 70. Процесс диффузионного насыщения поверхностного слоя стали одновременно азотом и углеродом в газовой среде:

- а) цементация;
- б) нитроцементация;
- в) азотирование;
- г) цианирование.

#### Конструкционные материалы

#### 71. Классификация сталей по назначению.

- а) обыкновенного качества, качественные, высококачественные и особовысококачественные;
- б) конструкционные, инструментальные, специального назначения;
- в) спокойные, полуспокойные, кипящие
- г) низко-, средне- и высокоуглеродистые
- д) доэвтектоидные, эвтектоидные, заэвтектоидные
- е) углеродистые и легированные

#### 72. Классификация сталей по химическому составу.

- а) обыкновенного качества, качественные, высококачественные и особовысококачественные;
- б) конструкционные, инструментальные, специального назначения;
- в) спокойные, полуспокойные, кипящие
- г) низко-, средне- и высокоуглеродистые
- д) доэвтектоидные, эвтектоидные, заэвтектоидные
- е) углеродистые и легированные.

#### 73. Классификация сталей по структуре.

- а) обыкновенного качества, качественные, высококачественные и особовысококачественные;
- б) конструкционные, инструментальные, специального назначения;
- в) спокойные, полуспокойные, кипящие
- г) низко-, средне- и высокоуглеродистые
- д) доэвтектоидные, эвтектоидные, заэвтектоидные
- е) углеродистые и легированные

#### 74. Классификация сталей по качеству.

- а) обыкновенного качества, качественные, высококачественные и особовысококачественные;
- б) конструкционные, инструментальные, специального назначения;
- в) спокойные, полуспокойные, кипящие
- г) низко-, средне- и высокоуглеродистые
- д) доэвтектоидные, эвтектоидные, заэвтектоидные
- е) углеродистые и легированные

#### 75. Классификация сталей стали по степени раскисления.

- а) обыкновенного качества, качественные, высококачественные и особовысококачественные;
- б) конструкционные, инструментальные, специального назначения;
- в) спокойные, полуспокойные, кипящие
- г) низко-, средне- и высокоуглеродистые
- д) доэвтектоидные, эвтектоидные, заэвтектоидные
- е) углеродистые и легированные

#### 76. Маркировка углеродистых сталей обыкновенного качества.

- a) CT;
- б) буквой У и двузначной цифрой после;
- в) буквами ЭП в конце марки

#### 77. Качество сталей зависит от [...].

- а) содержания углерода;
- б) содержания легирующих элементов;
- в) содержания серы и фосфора.

#### 78. Буквы Ст в обозначении марки сталей обозначают [...].

- а) сталь качественная;
- б) сталь обыкновенного качества;
- в) сталь инструментальная

#### 79. Буквы кп, пс и сп в марках сталей обозначают [...].

- а) химический состав;
- б) степень раскисления;
- в) качество

#### 80. Критерий для разделения сталей по качеству.

- а) степень раскисления стали;
- б) степень легирования стали;
- в) содержание в стали серы и фосфора;
- г) содержание в стали неметаллических включений.

# 81. Цифры в обозначении сталей обыкновенного качества, стоящие после букв Ст, обозначают [...].

- а) количество углерода;
- б) условный номер марки стали;
- в) вид термообработки

#### 82. Пример маркировки углеродистых качественных сталей.

- а) Ст4сп;
- б) 40;
- в) ШХ15;
- r) У10A

#### 83. Изделия, изготавливаемые из сталей марок 65, 70.

- а) изделия, изготавливаемые глубокой вытяжкой;
- б) пружины, рессоры;
- в) неответственные элементы сварных конструкций;
- д) цементуемые изделия.

#### 84. Автоматные стали – это [...]. а) стали, предназначенные для изготовления пружин, работающих в автоматических устройствах; б) стали, длительно работающие при цикловом знакопеременном нагружении; в) стали с улучшенной обрабатываемости резанием, имеющие повышенное содержание серы или дополнительно легированные свинцом, селеном или кальцием. 85. Пример маркировки автоматных сталей. a) A12; б) 30XMA;

#### r) AK4 86. Пример маркировки шарикоподшипниковых сталей.

a) 30XMA; б) 40;

B) AIII;

- в) ШХ15;
- г) У10A;
- д) 12X17

#### 87. Пример маркировки углеродистых инструментальных сталей.

- б) 40;
- в) ШХ15:
- г) У10A;
- д) 12X17

#### 88. Буква «У» в марке инструментальной стали обозначает [...].

- а) качественная;
- б) углеродистая;
- в) высокопрочная

#### 89. Пример маркировки легированных инструментальных сталей.

- a) 9XC;
- δ) 09Γ2C;
- в) 20X13;
- г) У8

#### 90. Буква «Р» в марке инструментальной стали обозначает [...].

- а) высококачественная;
- б) быстрорежущая;
- в) легированная

#### 91. Пример маркировки легированных конструкционных сталей.

- a) 30XMA;
- б) 40;
- в) ШХ15;
- г) У10A:
- д) Р6М5

#### 92. Буква «А» в середине марки легированной стали обозначает [...].

- а) высококачественная;
- б) азот;
- в) автоматная

#### 93. Буква «А» в конце марки обозначает [...].

- а) высококачественная;
- б) быстрорежущая;
- в) легированная

#### 94. Металлы называют жаростойкими.

- а) металлы, способные сопротивляться часто чередующимся нагреву и охлаждению;
- б) металлы, способные сопротивляться коррозионному воздействию газа при высоких температурах;
- в) металлы, способные сохранять структуру мартенсита при высоких температурах;
- г) металлы, способные длительное время сопротивляться деформированию и разрушению при повышенных температурах.

#### 95. Металлы называют жаропрочными.

- а) металлы, способные сопротивляться часто чередующимся нагреву и охлаждению;
- б) металлы, способные сопротивляться коррозионному воздействию газа при высоких температурах;
- в) металлы, способные сохранять структуру мартенсита при высоких температурах;
- г) металлы, способные длительное время сопротивляться деформированию и разрушению при повышенных температурах.

#### 96. Чугун – это [...].

а) сплав железа с никелем;

```
б) железо-углеродистый сплав с содержанием углерода ≤0.02%;
в) железо-углеродистый сплав с содержанием углерода от 0,02% до 2,14%;
г) железо-углеродистый сплав с содержанием углерода от 2,14% до 6,67%;
д) железо-углеродистый сплав с содержанием углерода ≥6,67%
97. Классификация белых чугунов по структуре..
а) доэвтектоидные, заэвтектоидные;
б) доэвтектические, эвтектические, заэвтектические;
в) эвтектические
98. Применение белых чугунов.
а) для передела в сталь или ковкий чугун;
б) для изготовления литых ответственных деталей;
в) для строительных колонн и фундаментальных плит
99. Различие чугунов по форме графита.
а) белые и серые;
б) белые и легированные;
в) серые, ковкие, высокопрочные, вермикулярные
100. Пример маркировки серых чугунов.
a) C425;
б) КЧ45-7;
в) ВЧ70:
г) ИЧХНТ
101. Пример маркировки ковких чугунов.
a) C425;
б) КЧ45-7;
в) ВЧ70;
г) СЧ25-12
102. Цифры в марке ковких чугунов обозначают [...].
а) количество углерода и легирующих элементов;
б) предел прочности МПа х10<sup>-1</sup> и относительное удлинение в %.;
в) относительное сужение и удлинение в %.
103. Форма графита в ковких чугунах.
а) хлопьевидный;
б) пластинчатый;
в) шаровидный;
г) вермикулярный
104. Цифры в марке высокопрочных чугунов обозначают [...].
а) количество углерода;
б) предел прочности МПа x10^{-1};
в)относительное удлинение в %.
  105. Вид графита в высокопрочных чугунах.
а) хлопьевидный;
б) пластинчатый;
в) шаровидный.
    106.Пример маркировки антифрикционных чугунов.
a) CY25;
б) КЧ45-7;
в) ВЧ70;
r) ACЧ-1;
д) ЧВГ
    107. Пример маркировки легированных чугунов.
a) A4K-1;
б) СЧ25;
в) ЧН19Х3Ш;
г)АЧВ-1
                       Производство и технология обработки материалов
    108.Для выполнения в отливках внутренних полостей и отверстий используют:
а) Арматуру
б) Стержни
в) Трубы
    109. Металлическая форма, которая заполняется расплавом под действием силы тяжести, на-
       зывается:
а) Пресс-форма
б) Кокиль
```

- в) Стержневой ящик
  - 110.Способность металлического расплава заполнять литейную форму называется:
- а) Жидкотекучестью
- б) Кристаллизацией
- в) Газопроницаемостью
  - 111. Основными технологическими свойствами литейных сплавов являются:
- а) Свариваемость и штампуемость
- б) Литейная усадка и жидкотекучесть
- в) Прочность и пластичность.
  - 112. Отливку простейшей формы, предназначенную для обработки давлением, называют:
- а) Слитком
- б) Слябом
- в) Поковкой.
  - 113.Процесс введения в жидкий расплав добавок в малых количествах с целью измельчения структурных составляющих и повышения механических свойств:
- а) Легирование
- б) Модифицирование
- в) Рафинирование
  - 114.Изменение химического состава, внутреннего строения и свойств сплава путем введения в него различных добавок в значительных количествах в процессе плавки:
- а) Легирование
- б) Модифицирование
- в) Рафинирование
  - 115. Очистка сплавов от газов, неметаллических включений и других вредных примесей:
- а) Легирование
- б) Модифицирование
- в) Рафинирование
  - 116. Разовые литейные формы изготавливают преимущественно из:
- а) Песчаных смесей
- б) Металла
- в) Полиэтилена
  - 117. Процесс извлечения отливки из формы и стержня из отливки называется:
- а) Вытряхиванием
- б) Выбивкой
- в) Разрушением.
  - 118.Процесс получения отливок в металлических формах, в которых металл поступает через литниковую систему под высоким давлением называется:
- а) Центробежным литьем
- б) Литьем под давлением
- в) По выплавляемым моделям.
  - 119. Крупные полости, образующиеся в утолщенных местах отливок, затвердевающих в последнюю очередь:
- а) Усадочные раковины
- б) Трещины
- в) Зональные ликвации.
  - 120.Способность металла деформироваться без разрушения под воздействием внешних сил и сохранять полученную форму после прекращения действия этих сил –
- а) Прочность
- б) Упругость
- в) Пластичность.
- 121. Обработка давлением, выполняемая при температурах ниже температуры рекристаллизации, называется:
- а) Холодной
- б) Теплой
- в) Горячей
  - 122.Обработка давлением, выполняемая при температурах выше температуры рекристаллизации, называется:
- а) Холодной
- б) Теплой
- в) Горячей
  - 123.Процесс, при котором слиток под действием сил трения втягивается в зазор между вал-ками прокатного стана и пластически деформируется ими с уменьшением сечения –

а) Волочение б) Прокатка в) Ковка 124. Процесс протягивания заготовки через постепенно сужающееся отверстие в инструменте а) Волочение б) Прокатка в) Ковка 125. Процесс выдавливания металла заготовки из замкнутой полости инструмента через отверстие матрицы с площадью меньше, чем площадь поперечного сечения заготовки: а) Волочение б) Прессование в) Прокатка 126. Процесс горячей обработки давлением путем многократного действия бойков а) Волочение б) Прокатка в) Ковка 127.... - придание заготовке заданной формы и размеров путем заполнения материалом рабочей полости штампа: а) Объемная штамповка б) Ковка в) Прессование 128.... - способ изготовления плоских или объемных тонкостенных изделий из листов с помощью штампов на прессах: а) Объемная штамповка б) Листовая штамповка в) Волочение 129.Слой материала, срезаемый с заготовки. а) припуск; б) допуск; в) размер. 130. Режим резания. а) скорость резания, подача, глубина резания; б) скорость резания, подача, ширина резания; в) скорость резания, подача, шероховатость. 131. Совокупность неровностей обработанной поверхности с относительной малыми шагами. а) гладкость; б) геометрия поверхность; в шероховатость. 132. Резцы для обтачивания наружных цилиндрических и конических поверхностей. а) расточные; б) проходные; в) отрезные; г) фасонные. 133. Резцы для растачивания сквозных и глухих отверстий. а) расточные; б) проходные; в) отрезные; г) фасонные. 134. Резцы для отрезания заготовок. а) расточные; б) проходные; в) отрезные; г) фасонные. 135. Резцы для обтачивания фасонных поверхностей. а) расточные; б) проходные; в) отрезные; г) фасонные. 136.Для обработки отверстий в заготовках деталей применяются [...] станки.

а) токарно-винторезные;

б) сверлильные; в) фрезерные.

#### 137. Режущий инструмент для сверлильных станков.

- а) резцы, сверла;
- б) сверла, зенкеры, развертки, метчики;
- в) сверла, фрезы.

#### 138. Многолезвийный инструмент для окончательной обработки отверстий.

- а) резец;
- б) развертка;
- в) сверло;
- г) фреза.

#### 139. Режущий инструмент для фрезерования.

- а) резцы, сверла;
- б) сверла, зенкеры, развертки, метчики;
- в) сверла, фрезы;
- г) фрезы.

#### 140. Физическая сущность процесса сварки.

- а) технологический процесс получения неразъемных соединений путем совместного пластического деформирования соединяемых частей;
- б) процесс получения неразъемных соединений путем расплавления кромок свариваемых изделий и последующей кристаллизации жидкого металла;
- в) процесс получения неразъемных соединений посредством установления межатомных связей между соединяемыми частями при нагревании и (или) пластическом деформировании.

#### 141. Термодинамическое определение процесса сварки.

- а) процесс получения монолитного соединения материалов путем термодинамически необратимого превращения тепловой и (или) механической энергии и вещества в стыке;
- б) процесс получения монолитного соединения путем превращения тепловой энергии и вещества в энергию сил межатомного взаимодействия в стыке;
- в) процесс получения монолитного соединения путем превращения механической энергии и пластического деформирования в энергию сил межатомного взаимодействия в стыке.

#### 142. Физические признаки, характеризующие осуществления процесса сварки.

- а) термические (тепловые) процессы нагрева и плавления;
- б) механические процессы, создающие давление при сварке;
- в) термические процессы, механические процессы, термомеханические процессы.

#### 143.Способы сварки плавлением.

- а) дуговая, электрошлаковая, газопрессовая, термитная, контактная, газовая;
- б) дуговая, плазменная, ультразвуковая, газовая, взрывом, диффузионная;
- в) дуговая, электронно-лучевая, лазерная, ванная, газовая, термитная, световая, электрошлаковая.

#### 144.Основные характеристики тепловых сварочных источников.

- а) полная и эффективная мощность, распределение теплового потока энергии и ее концентрация, режим работы источника (кратковременный, непрерывный, импульсный);
- б) полная и эффективная мощность, температура в источнике тепла, величина тока и напряжение электрической дуги;
- в) полная и эффективная мощность, распределение теплового потока энергии и ее концентрация, КПД источника.

#### 145.Наплавка.

- а) нанесение посредством сварки плавлением слоя металла на поверхность изделия;
- б) нанесение поверхностного слоя металла на изделие электродуговой сваркой покрытыми электродами;
- в) создание поверхностного слоя металла путем плазменного оплавления изделия.

#### 146.Сварочная электрическая дуга.

- а) устойчивый электрический разряд в сильно ионизированной смеси газов и паров свариваемых металлов, обусловленный протеканием электрического тока между электропроводными телами;
- б) процесс образования ионов и электронов в промежутке между электродами, к которым подводится напряжение;
- в) процесс протекания постоянного электрического тока между металлическими электродами при приложении к ним разности потенциалов.

#### 147.Признаки классификации сварных дуг.

- а) по среде, в которой происходит дуговой разряд, по роду применяемого электрического тока;
- б) по типу электрода, по длительности горения, по характеру воздействия на обрабатываемую поверхность прямое или косвенное воздействие;
- в) по среде, в которой происходит дуговой разряд, по роду применяемого электрического тока, по типу электрода, по длительности горения, по характеру воздействия на обрабатываемую поверхность прямое или косвенное воздействие.

#### 148.Статическая вольтамперная характеристика сварочной дуги.

а) зависимость напряжения дуги от сопротивления в дуговом промежутке;

- б) зависимость напряжения дуги от силы сварочного тока;
- в) зависимость напряжения дуги при постоянной ее длине от силы сварочного тока.

#### 149. Мощность электрической дуги определяется.

- а) величиной тока дуги;
- б) величиной напряжения дуги;
- в) произведением величины тока на величину напряжения дуги.

# 150.Перенос капель жидкого металла, образующихся при плавлении электрода в сварочную ванну, обусловлен:

- а) силой тяжести;
- б) электромагнитными силами, возникающими при протекании тока в дуге;
- в) силой поверхностного натяжения;
- г) силами реакции паров металла, выделяющимися из расплавленного металла капли;
- д) силой тяжести, электромагнитными силами, возникающими при протекании тока в дуге, силой поверхностного натяжения, силами реакции паров металла, выделяющимися из расплавленного металла капли.

# 151. Разновидности пространственных положений, при которых выполняются швы сварных соединений при сварке.

- а) нижнее и вертикальное;
- б) вертикальное и горизонтальное;
- в) потолочное:
- г) нижнее, вертикальное, горизонтальное, потолочное.

#### 152. Кристаллизация сварочной ванны при сварке плавлением начинается:

- а) от мелкодисперсных тугоплавких частиц, находящихся в жидком металле сварочной ванны;
- б) от дополнительных центров кристаллизации, вводимых в сварочную ванну из присадочного металла;
- в) от частично оплавленных зерен основного свариваемого металла.

#### 153.Металлургические процессы (реакции) при сварке плавлением включают в себя:

- а) взаимодействие расплавленного металла с газами;
- б) взаимодействие расплавленного металла со шлаками;
- в) взаимодействие расплавленного металла с газами и шлаками.

#### 154.Химический состав металла шва при сварке плавлением определяется:

- а) химическим составом и долей участия основного (свариваемого) металла в формировании шва;
- б) химическим составом и долей участия электродного металла в формировании шва;
- в) реакциями взаимодействия расплавленного металла с газами и шлаками;
- г) химическим составом и долей участия основного (свариваемого) металла, электродного металла в формировании шва, реакциями взаимодействия расплавленного металла с газами и шлаками.

# 155.Основные газы, взаимодействующие с жидким металлом при электродуговой и газовой сварке.

- а) кислород, азот, гелий;
- б) кислород, водород, аргон;
- в) кислород, азот, водород.

#### 156. Характерные зоны, определяющие строение сварного соединения:

- а) шов и основной металл;
- б) шов, зона сплавления, зона термического влияния или околошовная зона, основной металл;
- в) шов, зона сплавления, зона закалки, зона перекристаллизации, зона термического влияния, основной металл.

# 157. Характерные участки зоны термического влияния или околошовной зоны сварных соединений углеродистых сталей:

- а) участок перегрева, участок нормализации, участок неполной перекристаллизации, участок рекристаллизации, участок синеломкости;
- б) участок расплавленного металла, участок неполного расплавления, участок перекристаллизации, участок неполной перекристаллизации, участок старения и рекристаллизации, основной металл;
- в) металл шва, участок неполного расплавления, участок перегрева, участок перекристаллизации, основной металл.

#### 158.Свариваемость как свойство материалов.

- а) способность образовывать неразъемные соединения материалов без трещин и пор;
- б) свойство материалов или сочетания материалов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия;
- в) способность материалов образовывать неразъемные соединения с одинаковым химическим составом в шве и основном металле.

#### 159. Сварочные материалы для ручной электродуговой сварки.

- а) сварочная проволока, флюс;
- б) сварочная проволока;
- в) электроды.

#### 160.Параметры режима ручной дуговой сварки.

- а) время сварки, скорость сварки, величина сварочного тока;
- б) величина сварочного тока, напряжение дуги, диаметр электрода;
- в) скорость подачи проволоки, величина сварочного тока, напряжение дуги.

#### 161.Величина сварочного тока выбирается в зависимости от [...].

- а) диаметра электрода и типа металла электродного стержня;
- б) химического состава свариваемого металла и пространственного положения сварного шва;
- в) напряжения дуги и типа обмазки электродов.

#### 162. Диаметр электрода выбирается в соответствии с [...].

- а) химическим составом свариваемого металла;
- б) толщиной свариваемого металла;
- в) характеристиками сварочного оборудования.

#### 163. Автоматическая сварка под флюсом относится к способам [...].

- а) сварки давлением;
- б) сварки плавлением;
- в) термомеханическим способам сварки.

#### 164.Сварочные материалы для автоматической сварки под флюсом.

- а) сварочная проволока, флюс;
- б) сварочная проволока;
- в) электроды.

#### 165. Преимущества автоматической сварки под флюсом по сравнению с ручной дуговой:

- а) возможность сварки во всех пространственных положениях;
- б) повышение производительности процесса сварки, повышение качества сварных соединений, уменьшение себестоимости 1 м сварочного шва;
- в) наложение швов в труднодоступных местах.

# 166. Разновидности механизированной (полуавтоматической) сварки в зависимости от характера защиты расплавленного металла и типа электродной проволоки.

- а) аргонодуговая сварка, сварка в СО2, сварка в смеси газов;
- б) под флюсом, в защитных газах и порошковой проволокой;
- в) электрошлаковая и газовая.

#### 167.Инертные защитные газы.

- а) углекислый газ, азот, водород;
- б) аргон, гелий;
- в) кислород, ацетилен.

#### 168. Активные защитные газы.

- а) углекислый газ, азот, водород;
- б) аргон, гелий;
- в) кислород, ацетилен.

#### 169. Горючие газы для газовой сварки.

- а) азот, водород, кислород:
- б) ацетилено-кислородные, пропан-бутановые смеси, природный газ;
- в) аргон, гелий, углекислый газ.

#### 170. Параметры режима газовой сварки.

- а) способ сварки (левый и правый), мощность пламени, диаметр присадочной проволоки, траектория движения горелки и присадочной проволоки;
- б) величина сварочного тока, напряжение дуги, диаметр электрода или электродной проволоки, величина зазора между свариваемыми стержнями;
- в) величина сварочного тока, скорость подачи проволоки, напряжение в дуге, скорость сварки, диаметр электродной проволоки.

#### 171. Классификация резки по характеру применяемого подогрева.

- а) газовая, электрокислородная, кислородно-флюсовая с газовым нагревом;
- б) ацетилено-кислородная, пропан-бутановая;
- в) ручная дуговая, газовая.

#### 172.Классификация резки по характеру образуемых резов.

- а) разделительная, поверхностная, резка копьем;
- б) отделительная, объемная, сквозная;
- в) разрезная, контурная, глубокая.

#### 173. Основные причины, вызывающие возникновение напряжений и деформаций при сварке.

- а) литейная усадка при кристаллизации металла шва, неравномерный нагрев, изменение объема металла, вызванное структурными превращениями в металле при сварке;
- б) литейная усадка при кристаллизации металла шва, закреплений изделий в приспособлениях, перегрев изделия:

в) литейная усадка при кристаллизации металла шва, неравномерный нагрев, завышенная величина тока в дуге.

#### 174. Дефекты геометрической формы шва.

- а) трещины, поры, ослабление или чрезмерное усиление шва, грубая чешуйчатость и неравномерность ширины шва, непровары, подрезы, наплывы;
- б) трещины, шлаковые включения, ослабление или чрезмерное усиление шва, грубая чешуйчатость и неравномерность ширины шва, непровары, подрезы, наплывы;
- в) ослабление или чрезмерное усиление шва, грубая чешуйчатость и неравномерность ширины шва, непровары, подрезы, наплывы, провисание корня шва, прожоги, кратеры.

#### 175. Дефекты металлургического, гидродинамического и термодеформационного происхождения.

- а) горячие трещины, холодные трещины, поры, шлаковые включения, свищи;
- б) горячие трещины, холодные трещины, поры, непровары, подрезы, наплывы;
- в) горячие трещины, холодные трещины, поры, кратеры, прожоги.

#### Вопросы для экзамена

- 1. Атомно-кристаллическое строение металлов и сплавов. Типы кристаллических решеток.
- 2. Дефекты кристаллического строения и их влияние на свойства металлов.
- 3. Кристаллизация металлов. Общие закономерности и разновидности процессов кристаллизации. Самопроизвольная кристаллизация. Образование центров кристаллизации.
- 4. Несамопроизвольная кристаллизация. Модифицирование. Форма кристаллов. Строение металлического слитка.
- 5. Диаграммы состояния двойных систем. Основные типы.
- 6. Диаграмма состояния железо-углерод. Компоненты, фазы и структурные составляющие системы железо-углерод.
- 7. Влияние углерода и постоянных примесей на структуру и свойства сталей и чугунов. Легирующие элементы и их влияние на полиморфные превращения в железе, на свойства феррита и аустенита,
- 8. Термическая обработка сталей. Классификация и характеристика основных видов термической обработки.
- 9. Превращения при нагреве сталей. Образование аустенита. Рост зерна аустенита при нагреве. Наследственно крупно- и мелкозернистые стали.
- 10. Изотермическое превращение переохлажденного аустенита. Перлитное превращение.
- 11. Особенности мартенситного и бейнитного превращений. Особенности превращения аустенита при непрерывном охлаждении.
- 12. Превращения при отпуске закаленной стали.
- 13. Технология термической обработки сталей. Основные виды термической обработки стали.
- 14. Отжиг I и II рода и их разновидности.
- 15. Закалка стали. Способы закалки и их применение.
- 16. Отпуск стали. Классификация и применение разновидностей отпуска.
- 17. Поверхностное упрочнение металлов и сплавов. Поверхностная закалка стали.
- 18. Химико-термическая обработка сталей. Физические основы и разновидности.
- 19. Материалы для производства металлов и сплавов. Производство чугуна.
- 20. Физико-химическая сущность получения стали. Современные способы получения стали. Способы повышения качества.
- 21. Классификация и маркировка конструкционных сталей.
- 22. Классификация и маркировка инструментальных сталей.
- 23. Классификация и маркировка специальных сталей.
- 24. Классификация и маркировка чугунов. Области применения.
- 25. Цветные металлы и сплавы. Алюминиевые и медные сплавы.
- 26. Физическая сущность сварки плавлением и давлением.
- 27. Классификация способов сварки и область их применения
- 28. Оборудование для электродуговой сварки.
- 29. Ручная дуговая сварка покрытыми электродами. Сущность процесса.
- 30. Автоматическая сварка под флюсом.
- 31. Полуавтоматическая сварка в углекислом газе.
- 32. Сварочные материалы.
- 33. Что такое свариваемость (физическая и технологическая)?
- 34. Газовая сварка: сущность и схема процесса.

- 35. Резка металлов. Сущность и схема процессов, применяемая аппаратура.
- 36. Способы контактной сварки.
- 37. Контроль сварных соединений. Виды дефектов.
- 38. Понятие о пайке металлов.
- 39. Классификация способов обработки металлов давлением.
- 40. Влияние пластической деформации на свойства металлов (наклеп).
- 41. Сущность процесса прокатки.
- 42. Сущность процесса прессования.
- 43. Понятие о процессе волочения.
- 44. Сущность процесса ковки и штамповки.
- 45. Способы обработки металлов резанием.
- 46. Классификация поверхностей резания.
- 47. Основные требования, предъявляемые к инструментальным материалам.
- 48. Принцип классификации металлорежущих станков.
- 49. Основные требования, предъявляемые к материалам, обрабатываемым резанием.
- 50. Обработка на токарных, сверлильных, расточных, фрезерных, шлифовальных станках.
- 51. Литье в песчаные формы.
- 52. Классификация специальных способов литья.
- 53. Литье в металлические формы.
- 54. Литье под давлением.
- 55. Центробежное литье и литье по выплавляемым моделям.
- 56. Классификация способов производства изделий из полимерных материалов.
- 57. Неметаллические материалы, применяемые в машиностроении.

#### Паспорт фонда оценочных средств

| № п/п | Контролируемые разделы      | Код контролируемой    | Наименование оценочного |
|-------|-----------------------------|-----------------------|-------------------------|
|       | (темы) дисциплины           | компетенции           | средства                |
| 1     | Физико-химические основы    | (УП-1, ОПК-1, ОПК-3,  | Зачет                   |
|       | строения материалов         | ОПК-4, ОПК-5, ОПК-6). | Экзамен                 |
| 2     | Деформации, разрушение и    | (УП-1, ОПК-1, ОПК-3,  | Зачет                   |
|       | механические свойства мате- | ОПК-4, ОПК-5, ОПК-6). | Экзамен                 |
|       | риалов                      |                       |                         |
| 3     | Элементы теории сплавов.    | (УП-1, ОПК-1, ОПК-3,  | Зачет                   |
|       | Диаграмма состояния железо- | ОПК-4, ОПК-5, ОПК-6). | Экзамен                 |
|       | цементит. Структура железо- |                       |                         |
|       | углеродистых сплавов        |                       |                         |
| 4     | Теория и практика процессов | (УП-1, ОПК-1, ОПК-3,  | Зачет                   |
|       | упрочнения сплавов термиче- | ОПК-4, ОПК-5, ОПК-6). | Экзамен                 |
|       | ской, термомеханической,    |                       |                         |
|       | химико-термической обра-    |                       |                         |
|       | боткой, деформированием     |                       |                         |
|       | (наклепом)                  |                       |                         |
| 5     | Конструкционные материалы   | (УП-1, ОПК-1, ОПК-3,  | Зачет                   |
|       |                             | ОПК-4, ОПК-5, ОПК-6). | Экзамен                 |
| 6     | Производство и технология   | (УП-1, ОПК-1, ОПК-3,  | Зачет                   |
|       | обработки конструкционных   | ОПК-4, ОПК-5, ОПК-6). | Экзамен                 |
|       | материалов                  |                       |                         |

# 7.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности.

При проведении зачета обучающемуся предоставляется 30 минут на подготовку. Опрос обучающегося на зачете не должен превышать 0,5 астрономического часа. С зачета снимается материал тем, которые обучающийся выполнил в течение семестра по результатам тестирования на «хорошо» и «отлично».

При проведении экзамена обучающемуся представляется 60 минут на подготовку. Опрос обучающегося на экзамене не должен превышать 1 астрономического часа. С экзамена снимается материал тем, который обучающийся сдал на зачете.

Во время проведения зачета и экзамена обучающиеся могут пользоваться программой дисциплины, а также справочной литературой (ГОСТы).

#### 8. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), РАЗРАБОТАННОГО НА КАФЕДРЕ

| <b>№</b><br>п/п | Наименование из-<br>дания  Сварочные работы в                                                                                                                                                                                               | Вид издания<br>(учебник,<br>учебное посо-<br>бие, методиче-<br>ские указания,<br>компьютерная<br>программа)<br>Учебник | Автор (авторы)  Болдырев                           | Год изда-<br>ния<br>1994 | Место хра-<br>нения и ко-<br>личество  Библиотека |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------|---------------------------------------------------|
|                 | строительстве и основы технологии металлов: Учебник. М.: Изд-во АСВ, 1994. – 432 с., ил                                                                                                                                                     |                                                                                                                        | А.М., Орлов<br>А.С.                                |                          | 1500                                              |
| 2               | Материаловедение и технология материалов [Текст]: лаб. практикум / Воронеж. гос. архстроит. ун-т Воронеж, 2011 108 с.                                                                                                                       | учебное пособие                                                                                                        | А.С. Орлов,<br>Е.Г. Рубцова, И.Ю.<br>Зиброва,      | 2011                     | Библиотека<br>95                                  |
|                 | Орлов, А.С. Основные механические свойства металлических материалов и методы их оценки: метод. указания к выполнению лабораторных работ по дисциплине «Материаловедение» / Воронеж. гос. архстроит. ун-т; сост.:—Воронеж, 2010 32 с. № 643. | <b>Методические</b> указания                                                                                           | А.С. Орлов,<br>Е.Г. Рубцо-<br>ва, И.Ю.<br>Зиброва, | 2010                     | Библиотека<br>150                                 |
| 3               | Болдырев, А.М. Источники питания                                                                                                                                                                                                            | Учебное посо-<br>бие                                                                                                   | Болдырев<br>А.М., Орлов<br>А.С., Рубцова           | 2013                     | Библиотека<br>116                                 |

|   | сварочной дуги / Воронеж. гос. арх<br>строит. ун-т Воронеж, 2013                                                              |                        | Е.Г., Померанцев А.С.                         |      |                   |
|---|-------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------|------|-------------------|
| 4 | Орлов, А.С. Конструкционные металлы и сплавы. Технология конструкционных материалов / Воронежский ГАСУ. — Воронеж, 2014 87 с. | Лабораторный практикум | А.С. Орлов,<br>Е.Г. Рубцова,<br>И.Ю. Зиброва, | 2014 | Библиотека<br>330 |

# 9. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

| Вид учебных занятий  | Деятельность обучающегося                                     |
|----------------------|---------------------------------------------------------------|
| Лекция               | Написание конспекта лекций: кратко, схематично, последова-    |
|                      | тельно фиксировать основные положения, выводы, формулиров-    |
|                      | ки, обобщения; помечать важное, выделять ключевые слова, тер- |
|                      | мины. Обозначение вопросов, терминов, материала, которые вы-  |
|                      | зывают трудности, поиск ответов в рекомендуемой литературе.   |
|                      | Если самостоятельно не удается разобраться в материале, необ- |
|                      | ходимо сформулировать вопрос и задать преподавателю в конце   |
|                      | лекции, на консультации, на практическом занятии.             |
| Практические занятия | Конспектирование рекомендуемых источников. Получение и за-    |
|                      | крепление практических навыков по выбору металлов и сплавов,  |
|                      | подбору режимов термической обработки для них, выбору мето-   |
|                      | да и технологии сварки.                                       |
| Подготовка к зачету  | Работа с конспектом, подготовка ответов к контрольным вопро-  |
|                      | сам по практическим занятиям, вопросам тестирования.          |
| Подготовка к экзаме- | При подготовке к экзамену необходимо ориентироваться на кон-  |
| ну                   | спекты лекций, рекомендуемую литературу, контрольные вопро-   |
|                      | сы по практическим занятиям.                                  |

### 10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

# 10.1 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

Основная

#### 1.Солнцев, Юрий Порфирьевич.

Материаловедение [Текст] : учебник : рек. ФИРО. - 4-е изд., испр. - М. : Академия, 2011 (Саратов : ОАО "Саратов. полиграфкомбинат", 2011). - 492 с. : ил. - (Среднее проф. образование). - Библиогр.: с. 488-490 (51 назв.). - ISBN 978-5-7695-7946-2 : 595-00. экз. 10

#### 2. Орлов, Александр Семенович.

Материаловедение и технология материалов [Текст] : лаборатор. практикум : учеб. пособие : рек. ВГАСУ / Воронеж. гос. архитектур.-строит. ун-т. - Воронеж : [б. и.], 2011 (Воронеж : Отдел оперативной полиграфии изд-ва учеб. лит. и учеб.-метод. пособий ВГАСУ, 2011). экз -95

3. Алексеев А.Г. Технология конструкционных материалов [Электронный ресурс]: учебное пособие/ Алексеев А.Г., Барон Ю.М., Коротких М.Т.— Электрон. текстовые данные.— СПб.: Политехника, 2012.— 596 с.— Режим доступа: http://www.iprbookshop.ru/15915.— ЭБС «IPRbooks»,

Дополнительная

#### 1.Орлов, А.С.

Конструкционные металлы и сплавы. Технология конструкционных материалов : Лабораторный практикум / Орлов А. С. - Воронеж : Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2014. - 87 с. - ISBN 988-5-89040-489-3. URL: <a href="http://www.iprbookshop.ru/30839">http://www.iprbookshop.ru/30839</a>

2.Орлов, А. С.

Конструкционные металлы и сплавы. Технология конструкционных материалов : Лабораторный практикум / Орлов А. С. - Воронеж : Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2014. - 87 с. - ISBN 988-5-89040-489-3. URL. экз 330

3. Орлов, Александр Семенович.

Материаловедение и технология материалов [Электронный ресурс] : лаборатор. практикум : учеб. пособие : рек. ВГАСУ / Воронеж. гос. архитектур.-строит. ун-т. - Воронеж : [б. и.], 2011 (Воронеж : Отдел оперативной полиграфии изд-ва учеб. лит. и учеб.-метод. пособий ВГАСУ, 2011). - 1 электрон. опт. диск. - 20-00. ACB, 2014. - 87 с. - ISBN 988-5-89040-489-3. URL. экз 330

# 10.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем:

- 1. Компьютерный класс, который позволяет реализовать неограниченные образовательные возможности с доступом в сеть Интернет на скорости 6 мегабит в секунду. С возможностью проводить групповые занятия с обучаемыми, а так же онлайн (оффлайн) тестирование.
- 2. Библиотечный электронный читальный зал с доступом к электронным ресурсам библиотек страны и мира. В количестве 3-х мест.
- 3. Персональный компьютер с предустановленным лицензионным программным обеспечением не ниже Windows XP, Office 2007, которое позволяет работать с видео-аудио материалами, создавать и демонстрировать презентации, с выходом в сеть Интернет
- 4. Видеопроектор для демонстрации слайдов.

# 10.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля):

- 1. Операционная система Windows.
- 2. Текстовый редактор MS Word.
- 3. Графический редактор MS Paint.
- 4. Средства компьютерных телекоммуникаций: Internet Explorer, Google Chrome.
- 5. Компьютерная программа контроля знаний в локальной сети.

Для самостоятельной работы рекомендуется использовать Интернет-ресурсы:

- <a href="http://encycl.yandex.ru">http://encycl.yandex.ru</a> (Энциклопедии и словари);

- <a href="http://standard.gost.ru">http://standard.gost.ru</a> (Росстандарт);
- <u>http://www.fepo.ru</u> (Подготовка к Интернет-тестированию).

# 11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА, НЕОБХОДИМАЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА:

- круги шлифовальные ГОСТ 8212
- печь тип СНОЛ 1,6.2,5.1/9-ИЗ
- печь СНОЛ-25/12
- твердомеры ТК-2 и ТШ
- машина разрывная Р-5
- копер маятниковый
- микроскопы МИМ-7
- штангенциркуль
- слайдпроектор и набор кодограмм
- пост для ручной электродуговой сварки (стол, вытяжка, источник питания, токопроводящие провода, электрододержатель, щиток, молоток, зубило, металлическая шетка)
- сварочный трактор ТС-17, сварочный выпрямитель ВДМ-1202С
- сварочный полуавтомат ПДГ-515-4К, источник ВДУ-506У3, баллоны с углекислым
- установка для односторонней сварки K-264, установка для двусторонней сварки MTP-1201
- пост газовой сварки (газовые баллоны, понижающие газовые редукторы, шланги и инжекторная горелка), макет и стенд по газовой сварке
- пост газовой резки (газовые баллоны, понижающие газовые редукторы, шланги, резаки), макет и стенд по газовой резке.

# 12. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ (образовательные технологии)

В процессе изучения дисциплины «Материаловедение и технология материалов» используется курс лекций, практические занятия.

**Лекция.** Можно использовать различные типы лекций: вводная, мотивационная (возбуждающая интерес к осваиваемой дисциплине); подготовительная (готовящая обучающегося к более сложному материалу); интегрирующая (дающая общий теоретический анализ предшествующего материала); установочная (направляющая обучающихся к источникам информации для дальнейшей самостоятельной работы).

Содержание и структура лекционного материала должны быть направлены на формирование у обучающегося соответствующих компетенций и соотноситься с выбранными преподавателем методами контроля и оценкой их усвоения.

**Практические работы.** Практические работы играют важную роль в вырабатывании у обучающихся навыков применения полученных знаний для решения практических задач. Важнейшей стороной любой формы практических занятий являются *упражнения*. Основа в упражнении - пример, который разбирается с позиций теории, изложенной в лекции. Как правило, основное внимание уделяется формированию конкретных умений, навыков, что и определяет содержание деятельности обучающихся - решение задач, графические работы, уточнение категорий и понятий науки, являющихся предпосылкой правильного мышления и речи. Проводя упражнения с обучающимися, следует специально обращать внимание на формирование способности к осмыслению и пониманию.

*Цель занятий* должна быть ясна не только преподавателю, но и обучающимся. Следует организовывать практические работы так, чтобы студенты постоянно ощущали нарастание сложности выполняемых заданий, испытывали положительные эмоции от переживания собственного успеха в учении, были заняты напряженной творческой работой, поисками правильных и точных решений. Большое значение имеют индивидуальный подход и продуктивное педагогическое общение. Обучаемые должны получить возможность раскрыть и проявить свои способности, свой личностный потенциал. Поэтому при разработке заданий преподаватель должен учитывать уровень подготовки и интересы каждого студента группы, выступая в роли консультанта и не подавляя самостоятельности и инициативы студентов. Лабораторный практикум направлен на практическое изучение наиболее распространенных способов механических испытаний металлических материалов, макроскопического и микроскопического анализа металлов и сплавов, основ термической обработки сталей. Обучающиеся проводят испытания, измерения, расчеты и анализ полученных результатов, по каждой работе оформляется отчет по определенной форме.

Самостоятельная и внеаудиторная работа обучающихся при освоении учебного материала. Самостоятельная работа может выполняться обучающимся в читальном зале библиотеки, в учебных кабинетах (лабораториях), компьютерных классах, а также в домашних условиях. Организация самостоятельной работы обучающегося должна предусматривать контролируемый доступ к лабораторному оборудованию, приборам, базам данных, к ресурсу Интернет. Необходимо предусмотреть получение обучающимся профессиональных консультаций, контроля и помощи со стороны преподавателей.

Самостоятельная работа обучающихся должна подкрепляться учебнометодическим и информационным обеспечением, включающим учебники, учебнометодические пособия, конспекты лекций, учебным программным обеспечением.

Промежуточный контроль включает зачет и экзамен. Зачет проводится в форме тестирования или Интернет-тестирования или в устной форме. К зачету допускаются обучающиеся, полностью выполнившие учебный план дисциплины. Возможно проведение зачета на основании рейтинговой оценки работы (в т.ч. и самостоятельной) в течение семестра.

Программа составлена в соответствии с требованиями  $\Phi$  ГОС ВО с учетом рекомендаций и ОПОП ВО по направлению подготовки 15.06.01 «Машиностроение», профиль 05.02.10 «Сварка, родственные процессы и технологии», 05.05.04 «Дорожные, строительные и подъемно-транспортные машины».

| Руководитель основной                                                    |                                               |
|--------------------------------------------------------------------------|-----------------------------------------------|
| образовательной программы                                                | А.С. Орлов                                    |
|                                                                          | подпись                                       |
| Рабочая программа одобрена учебно-методиче                               | еской комиссией                               |
| «»2015 г., протокол №                                                    |                                               |
| Председатель                                                             |                                               |
| ученая степень, звание, подпись                                          | инициалы, фамилия                             |
| Эксперт                                                                  |                                               |
| (место работы) (занимаемая                                               | я должность) (подпись) (инициалы, фамилия)    |
|                                                                          | МΠ                                            |
| Министерство образования и науки                                         | «УТВЕРЖДАЮ»                                   |
| Российской Федерации                                                     | Зав. кафедрой<br>А.С. Орлов                   |
| Федеральное государственное бюджетное                                    |                                               |
| образовательное учреждение высшего<br>образования                        | Кафедра МК и сварки в строительстве           |
| Воронежский государственный архитектурно-строительный университет        | Дисциплина: «Материаловедение и ТМ»<br>Курс 2 |
|                                                                          |                                               |
| <b>ЭКЗАМЕНАЦИОН</b>                                                      | НЫЙ БИЛЕТ № 1                                 |
| 1. Атомно-кристаллическое стро-                                          |                                               |
| <ol><li>Компоненты. Фазы и структу<br/>цементит.</li></ol>               | рные составляющие системы железо-             |
| <ol><li>Физическая сущность получен<br/>кация способов сварки.</li></ol> | ния сварного соединения и классифи-           |
| Экзаменатор                                                              |                                               |
|                                                                          |                                               |

Министерство образования и науки Российской Федерации

«УТВЕРЖДАЮ»

| Зав. кафедрой |
|---------------|
| А.С. Орлов    |
|               |
|               |

Федеральное государственное бюджетное образовательное учреждение высшего образования
Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Типы межатомных связей.
- 2. Классификация и виды термической обработки.
- 3. Источники сварочного тока, требования к источникам тока и их внешние характеристики. Источники постоянного и переменного тока.

| Экзаменатор |  |
|-------------|--|
| •           |  |

#### «УТВЕРЖДАЮ»

| Зав. | кафедрой   |
|------|------------|
|      | А.С. Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

## ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 3

- 1. Дефекты кристаллических решеток и их влияние на свойства металла.
- 2. Превращения при нагреве сталей. Образование аустенита. Рост зерна аустенита при нагреве. Дефекты структуры сталей при нагреве (перегрев, пережог).
- 3. Назначение и порядок формовки песчано-глинистыми смесями.

| Экзаменатор                                                                                                                                                              |                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Министерство образования и науки<br>Российской Федерации                                                                                                                 | «УТВЕРЖДАЮ»                                                                      |
|                                                                                                                                                                          | Зав. кафедрой<br>А.С. Орлов                                                      |
| Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет | Кафедра МК и сварки в строительстве  Дисциплина: «Материаловедение и ТМ»  Курс 2 |

- 1. Фазы и структуры в металлических сплавах.
- 2. Влияние углерода и постоянных примесей на структуру и свойства сталей.
- 3. Особенности сварки в защитных газах.

| Экзаменатор |  |  |
|-------------|--|--|
| -           |  |  |

#### «УТВЕРЖДАЮ»

| Зав.кафедрой | į    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5

- 1. Компоненты. Фазы и структурные составляющие системы железоцементит.
- 2. Основы теории отпуска сталей.
- 3. Термическая резка. Условия осуществления кислородной резки.

| Экзаменатор                                                                                            |                                     |
|--------------------------------------------------------------------------------------------------------|-------------------------------------|
| Министерство образования и науки                                                                       | «УТВЕРЖДАЮ»                         |
| Российской Федерации                                                                                   | Зав. кафедрой<br>А.С. Орлов         |
| Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования | Кафедра МК и сварки в строительстве |
| профессионального образования<br>Воронежский государственный                                           | Дисциплина: «Материаловедение и ТМ» |

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 6

Kypc 2

- 1. Термодинамические основы процесса кристаллизации.
- 2. Отжиг 1 и 2 рода.

архитектурно-строительный университет

3. Основные свойства литейных сплавов.

| Экзаменатор |  |  |  |
|-------------|--|--|--|
|-------------|--|--|--|

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й          |
|--------------|------------|
|              | А.С. Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 7

- 1. Общие закономерности и разновидности процессов кристаллизации.
- 2. Закалка стали. Способы закалки.
- 3. Автоматическая сварка. Производительность, преимущества и недостатки.

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

| Зав | кафедро | й    |       |
|-----|---------|------|-------|
|     |         | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Самопроизвольная кристаллизация.
- 2. Классификация и виды термической обработки.
- 3. Центробежное литье. Сущность. Область применения.

| Экзаменатор |  |
|-------------|--|
|             |  |

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9

- 1. Легирующие элементы в стали и их влияние на свойства.
- 2. Термомеханическая обработка.
- 3. Полуавтоматическая сварка. Сущностью Способы защиты расплавленного металла.

| Экзаменатор |  |  |  |  |  |
|-------------|--|--|--|--|--|
|             |  |  |  |  |  |

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

| Зав. | кафедро | рй   |       |
|------|---------|------|-------|
|      |         | A.C. | Орлог |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Изменение структуры и свойств металлов при пластической деформации. Наклеп.
- 2. Химико-термическая обработка.
- 3. Сварка порошковой проволокой.

| Экзаменатор |  |  |  |  |  |  |  |
|-------------|--|--|--|--|--|--|--|
|             |  |  |  |  |  |  |  |

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 11

- 1. Влияние нагрева на структуру и свойства деформированного металла.
- 2. Закалка стали. Способы закалки.
- 3. Контроль качества сварных соединений.

| Экзаменатор | n |  |
|-------------|---|--|
|             | U |  |

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

| 3 | в. кафедро | й  |       |
|---|------------|----|-------|
|   |            | AC | Оппов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Классификация сталей.
- 2. Отпуск стали.
- 3. Диффузионная сварка. Сущность. Схема процесса. Область применения.

| Экзаменатор | ) |  |  |
|-------------|---|--|--|
|             |   |  |  |

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 13

- 1. Углеродистые конструкционные стали.
- 2. Диаграмма состояния железо-углерод. Компоненты, фазы, структуры.
- 3. Газовая сварка. Сущность. Область применения. Строение пламени. Способы сварки.

| Экзаменатор |  |  |  |
|-------------|--|--|--|
|             |  |  |  |

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

Зав. кафедрой \_\_\_\_\_ А.С. Орлов

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Конструкционные легированные стали.
- 2. Превращения переохлажденного аустенита.
- 3. Изготовление отливок литьем в кокиль. Сущность способа.

| Экзаменатор |  |
|-------------|--|
|             |  |

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 15

- 1. Инструментальные стали и сплавы. Классификация и требования, предъявляемые к инструментальным сталям.
- 2. Основы теории отпуска сталей.
- 3. Ручная дуговая сварка покрытыми электродами. Электроды, назначение, состав покрытия. Классификация электродов.

| Экзаменатор | ) |
|-------------|---|
|             |   |

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

| Зав. | кафедрой |           |
|------|----------|-----------|
|      | A        | А С Орлог |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Строение слитка. Модификаторы 1 и 2 рода.
- 2. Химико-термическая обработка сталей.
- 3. Литье по выплавляемым моделям. Сущность. Области применения.

| Экзаменатор |  |
|-------------|--|
|             |  |

#### «УТВЕРЖДАЮ»

| Зав. кафедро: | й    |       |
|---------------|------|-------|
|               | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

Дисциплина: «Материаловедение и ТМ»

Kypc 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 17

- 1. Коррозионностойкие стали.
- 2. Влияние нагрева на структуру и свойства деформированного металла.
- 3. Дуговая сварка. Сущность процесса. Виды сварок. Статическая характеристика дуги.

| Экзаменатор                                                              |                                     |
|--------------------------------------------------------------------------|-------------------------------------|
| Министерство образования и науки<br>Российской Федерации                 | «УТВЕРЖДАЮ»                         |
| 1 оссинской Федерации                                                    | Зав. кафедрой<br>А.С. Орлов         |
| Федеральное государственное бюджетное образовательное учреждение высшего | Кафедра МК и сварки в строительстве |

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 18

- 1. Стали и сплавы с магнитными свойствами.
- 2. Химико-термическая обработка.
- 3. Прокатка. Сущность процесса.

профессионального образования Воронежский государственный

архитектурно-строительный университет

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 19

- 1. Форма кристаллов. Строение металлического слитка.
- 2. Металлы и сплавы с особыми электрическими свойствами.
- 3. Классификация способов обработки металлов давлением.

| Экзаменатор |  |  |
|-------------|--|--|
|             |  |  |

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й          |
|--------------|------------|
|              | А.С. Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Жаропрочные и жаростойкие стали и сплавы.
- 2. Сплавы на основе алюминия.
- 3. Прессование. Сущность процесса прессования.

| Экзаменатор |      |  |  |  |
|-------------|------|--|--|--|
|             | <br> |  |  |  |

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 21

- 1. Сплавы на основе меди.
- 2. Закалка стали. Способы закалки.
- 3. Ковка. Сущность процесса. Волочение.

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й          |
|--------------|------------|
|              | А.С. Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Термопластичные и термореактивные полимеры.
- 2. Отжиг 1 и 2 рода.
- 3. Штамповка. Сущность процесса объемной и листовой штамповки.

| Экзаменатор |  |  |  |  |
|-------------|--|--|--|--|
|             |  |  |  |  |

#### «УТВЕРЖДАЮ»

| Зав. кафедро | й    |       |
|--------------|------|-------|
|              | A.C. | Орлов |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

# ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 23

- 1. Резиновые материалы. Состав и свойства.
- 2. Влияние нагрева на структуру и свойства деформированного металла.
- 3. Литье под давлением. Назначение пресс-формы.

| Экзаменатор |  |  |  |
|-------------|--|--|--|
| -           |  |  |  |

\_\_\_\_\_

Министерство образования и науки Российской Федерации

#### «УТВЕРЖДАЮ»

| Зав. | кафедро | й    |       |
|------|---------|------|-------|
|      |         | A.C. | Орлон |

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Воронежский государственный архитектурно-строительный университет

Кафедра МК и сварки в строительстве

Дисциплина: «Материаловедение и ТМ» Курс 2

- 1. Строительные и арматурные стали.
- 2. Закалка стали. Способы закалки.
- 3. Литье в разовые песчано-глинистые формы. Сущность процесса

| Экзаменатор |  |
|-------------|--|
|             |  |