4.2.7 Аннотация рабочей программы дисциплины

Б1.В.ОД.7 «Технология производства микро- и наносистемной техники»

Общая трудоемкость изучения дисциплины составляет 7 з.е. (252 час).

1. Цели и задачи изучения дисциплины

Дисциплина «Технология производства микро- и наносистемной техники» формирует знания в области способов нанесения, удаления и модифицирования вещества на микро- и наноуровне, используемых при создании компонентов твердотельной электроники и интегральных микросхем. Изучаются базовые процессы и оборудование, используемые в традиционной микротехнологии, а также специфические процессы, позволяющие формировать структуры на молекулярном уровне и основанные на способности к самоорганизации, селективности, анизотропии и принципе матрицы.

2. Основные дидактические единицы (разделы)

Системный подход к процессам микро- и нанотехнологии.

Производственная чистота, гигиена и безопасность.

Оборудование и методы нанесения вещества.

Оборудование и методы удаления вещества.

Оборудование и методы модифицирования вещества.

Литографические процессы. Сборка и герметизация.

Интенсификация и интеграция процессов микро- и нанотехнологии.

Компетенции, приобретаемые студентом в процессе изучения дисциплины

	готовность аргументировано выбирать физические или химиче-
ПКВ -5	ские методы получения наноструктур и наноструктурированных
	материалов исходя из требований разработки новых материалов
	и компонентов нано- и микросистемной техники
	готовность использовать базовые технологические процессы и
ПКВ -7	оборудование, применяемые в производстве материалов, компо-
	нентов нано- и микросистемной техники

результате изучения дисциплины студент должен знать:

- современные операции микро- и нанотехнологии;
- физико-технологические и экономические ограничения миниатюризации и интеграции (ПКВ-5);
- принципы организации базовых технологических процессов создания компонентов нано- и микросистемной техники (ПКВ-7).

уметь:

- выбирать оптимальные технологические процессы, их последовательности и контрольно-измерительные операции для производства изделий нано-и микросистем (ПКВ-7).

владеть:

- навыками реализации современных способов нанесения, удаления и модифицирования материалов при создании элементной базы микро и наносистем (ПКВ-7);

Виды учебной работы: лекции, практические занятия. **Изучение дисциплины** заканчивается экзаменом.