РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19)**RU**(11)**2 650 014**(13)**C2**

(51) МПК <u>F03D 7/06</u> (2006.01) <u>F03D 3/06</u> (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(21)(22) Заявка: 2016121609, 31.05.2016

(24) Дата начала отсчета срока действия патента: **31.05.2016**

Приоритет(ы):

(22) Дата подачи заявки: 31.05.2016

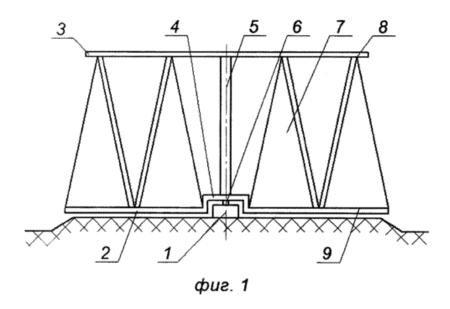
- (43) Дата публикации заявки: **05.12.2017** Бюл. № **34**
- (45) Опубликовано: 06.04.2018 Бюл. № 10
- (56) Список документов, цитированных в отчете о поиске: RU 2479748 C2, 20.04.2013. RU 2351796 C1, 10.04.2009. RU 2399788 C2, 20.09.2010. RU 10793 U1, 16.08.1999. US 4329593 A1, 11.05.1982. WO 2011037870 A2, 31.03.2011.

Адрес для переписки:

394026, г. Воронеж, Московский просп., 14, ГОУВПО "ВГТУ", патентный отдел

(72) Автор(ы):

Литвиненко Александр Михайлович (RU)


(73) Патентообладатель(и):

Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (RU)

(54) Роторный ветродвигатель

(57) Реферат:

Изобретение относится к области ветроэнергетики. Роторный ветродвигатель содержит вращающееся основание, траверсы, приемники энергии и центральную стойку. Приемники энергии выполнены в виде полых полуконусов, закрепленных между верхними и нижними траверсами, причем крепление полых полуконусов к траверсам выполнено с чередованием крепления у вершин и крепления у оснований. Изобретение направлено на повышение коэффициента полезного действия. 3 ил.

Изобретение относится к области ветроэнергетики и может быть использовано для создания новых преобразователей энергии ветра в электрическую.

Известен ветродвигатель [Пат. РФ №2351796, опубл. 10.04.2009, бюл. №10, з-ка 2007124236/06, 27.06.2007/ Ветродвигатель. А.М. Литвиненко]. Ветродвигатель содержит вертикальный вал, башню и лопасти, выполненные вогнутой формы. Лопасти установлены на шкворнях, каждая из которых с помощью шарниров соединена с шарнирно установленными на валу тягами с образованием параллелограммов. Шкворни снабжены аэродинамическими поверхностями, имеющими наклон, при этом нижние тяги дополнительно соединены с валом с помощью шарнирно установленных пружинно-демпфирующих элементов. Недостатками данной конструкции являются сложность и низкая эффективность.

Из всех известных аналогов наиболее близким к заявленному по совокупности существенных признаков является роторный ветродвигатель [Пат. РФ №2479748, опубл. 27.09.2012, бюл. №27, з-ка 2011110598/06, 21.03.2011 /Роторный ветродвигатель. А.М. Литвиненко]. Роторный ветродвигатель содержит вращающееся основание, траверсы, колонны с приемниками энергии и центральную стойку, приемники энергии выполнены в виде установленных между верхними и нижними траверсами колонн с частично охватывающими их гибкими шторками, закрепленными одним краем по образующим колонн, а другим краем связанными тягами с соответствующим краем шторки противоположной колонны, при этом колонны выполнены пустотелыми и снабжены окнами с перемычками, окна расположены на одной стороне колонн, идущей по потоку.

Недостатком данного ветродвигателя является сложность конструкции, низкая технологичность.

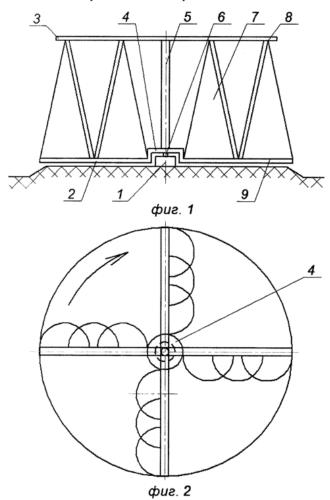
Изобретение направлено на повышение уровня технологичности.

Это достигается тем, что у роторного ветродвигателя, содержащего вращающееся основание, траверсы, приемники энергии и центральную стойку, согласно изобретению приемники энергии выполнены в виде полых полуконусов, закрепленных между верхними и нижними траверсами, причем крепление полых полуконусов к траверсам выполнено с чередованием крепления у вершин и крепления у оснований.

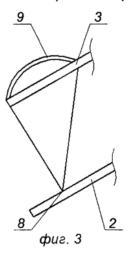
Сущность изобретения иллюстрируется чертежами, где на фиг. 1 изображен роторный ветродвигатель, вид спереди (средние траверсы условно не показаны), на фиг. 2 - роторный ветродвигатель, вид сверху, на фиг. 3 - изображение одного приемника энергии в изометрии.

Роторный ветродвигатель содержит неподвижное основание 1 с рабочей машиной, нижнюю траверсу 2, верхнюю траверсу 3, вращающееся основание 4, центральную стойку 5, вал 6, приемники энергии 7, закрепленные на траверсах или вершиной 8, или основанием 9.

Работа устройства


При набегании ветрового потока (как показано на фиг. 2 стрелками), происходит вращение ветродвигателя по часовой стрелке вследствие разности аэродинамических сопротивлений ветроприемников, расположенных по разные стороны траверс от центральной стойки 5, в частности, левые ветроприемники имеют значительно большее аэродинамическое сопротивление по сравнению с правыми (см. фиг. 1), поскольку они обращены к потоку вогнутостью, в то время как правые - выпуклостью. Приемники энергии могут быть выполнены в виде тканого полотна треугольной формы, закрепленного вершиной на одной из траверс, например нижней, а основанием 9 на другой, например верхней (см. фиг. 3). При этом места закреплений (как видно на фиг. 1) чередуются.

Технико-экономическим преимуществом данной ветроэнергетической установки является относительно высокая энергетика установки, что дает возможность сооружать установки с более высоким коэффициентом полезного действия.


Формула изобретения

Роторный ветродвигатель, содержащий вращающееся основание, траверсы, приемники энергии и центральную стойку, отличающийся тем, что приемники энергии выполнены в виде полых полуконусов, закрепленных между верхними и нижними траверсами, причем крепление полых полуконусов к траверсам выполнено с чередованием крепления у вершин и крепления у оснований.

Роторный ветродвигатель

Роторный ветродвигатель

